一、指数运算的8个运算法则都有什么,要全的
八个公式:
1、y=c(c为常数) y'=0;
2、y=x^n y'=nx^(n-1);
3、y=a^x y'=a^xlna y=e^x y'=e^x;
4、y=logax y'=logae/x y=lnx y'=1/x ;
5、y=sinx y'=cosx ;
6、y=cosx y'=-sinx ;
7、y=tanx y'=1/cos^2x ;
8、y=cotx y'=-1/sin^2x。
运算法则:
加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)
除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2
扩展资料
在某种情况下(基数>0,且不为1),指数运算中的指数可以通过对数运算求解得到。
幂(n^m)中的n,或者对数(x=logaN)中的 a(a>0且a不等于1)。
在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。
参考资料来源:搜狗百科-指数
二、指数对数的运算法则有哪些啊,
1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,且a≠1? 理由如下: ①若a0,y>0,x·y1+lgx=1, 两边取对数得:lgx+(1+lgx)lgy=0. 即lgy=-lgx1+lgx(x≠110,lgx≠-1). 令lgx=t, 则lgy=-t1+t(t≠-1). ∴lg(xy)=lgx+lgy=t-t1+t=t21+t. 解题规律 对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解. ∴Δ=S2+4S≥0,解得S≤-4或S≥0, 故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞). 5 求值: (1)lg25+lg2·lg50+(lg2)2; (2)2log32-log3329+log38-52log53; (3)设lga+lgb=2lg(a-2b),求log2a-log2b的值; (4)求7lg20·12lg0.7的值. 解析(1)25=52,50=5*10.都化成lg2与lg5的关系式. (2)转化为log32的关系式. (3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢? (4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数, 设x=7lg20·12lg0.7能否先求出lgx,再求x? 解答(1)原式=lg52+lg2·lg(10*5)+(lg2)2 =2lg5+lg2·(1+lg5)+(lg2)2 =lg5·(2+lg2)+lg2+(lg2)2 =lg102·(2+lg2)+lg2+(lg2)2 =(1-lg2)(2+lg2)+lg2+(lg2)2 =2-lg2-(lg2)2+lg2+(lg2)2=2. (2)原式=2log32-(log325-log332)+log323-5log59 =2log32-5log32+2+3log32-9 =-7. (3)由已知lgab=lg(a-2b)2 (a-2b>0), ∴ab=(a-2b)2, 即a2-5ab+4b2=0. ∴ab=1或ab=4,这里a>0,b>0. 若ab=1,则a-2b0,a≠1,c>0,c≠1,N>0); (2)logab·logbc=logac; (3)logab=1logba(b>0,b≠1); (4)loganbm=mnlogab. 解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证. (2)中logbc能否也换成以a为底的对数. (3)应用(1)将logab换成以b为底的对数. (4)应用(1)将loganbm换成以a为底的对数. 解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN, ∴b=logcNlogca.∴logaN=logcNlogca. (2)由(1)logbc=logaclogab. 所以 logab·logbc=logab·logaclogab=logac. (3)由(1)logab=logbblogba=1logba. 解题规律 (1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用.对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa=mnlogab. 7 已知log67=a,3b=4,求log127. 解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢? 解答已知log67=a,log34=b, ∴log127=log67log612=a1+log62. 又log62=log32log36=log321+log32, 由log34=b,得2log32=b. ∴log32=b2,∴log62=b21+b2=b2+b. ∴log127=a1+b2+b=a(2+b)2+2b. 解题技巧 利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧ر8 已知x,y,z∈R+,且3x=4y=6z. (1)求满足2x=py的p值; (2)求与p最接近的整数值; (3)求证:12y=1z-1x. 解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答? 解答(1)解法一3x=4yÞlog33x=log34yÞx=ylog34Þ2x=2ylog34=ylog316, ∴p=log316. 解法二设3x=4y=m,取对数得: x·lg3=lgm,ylg4=lgm, ∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4. 由2y=py, 得 2lgmlg3=plgmlg4, ∴p=2lg4lg3=lg42lg3=log316. (2)∵2=log390,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab? 解答logma+b3=logm(a+b3)212= 解题技巧 ①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一. ②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9. ∵a2+b2=7ab, ∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb), 即logma+b3=12(logma+logmb). 思维拓展发散 1 数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a*10n.其中N>0,1≤alogk44>logk。