1.数学小知识50字以上,200字以下
1、数学是无穷的科学. ——外尔(Weil)
2、问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )
3、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )
4、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.——高斯 (Gauss)
5、数学是科学6、数学比喻: 古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天。他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习"。
7、把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义
8、不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点。
9、会用数学公式,并不说明你会数学。
10、如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好!
的皇后,而数论是数学的皇后 ——高斯(Gauss)
2.【求小学一年级数学小知识】
数学小知识 数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系.数学符号的发明和使用比数字晚,但是数量多得多.现在常用的有200多个,初中数学书里就不下20多种.它们都有一段有趣的经历.例如加号曾经有好几种,现在通用"+"号."+"号是由拉丁文"et"("和"的意思)演变而来的.十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号."-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了.到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号.乘号曾经用过十几种,现在通用两种.一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的.德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号.他自己还提出用"п"表示相乘.可是这个符号现在应用到集合论中去了.到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号.他认为"*"是"+"斜起来写,是另一种表示增加的符号."÷"最初作为减号,在欧洲大陆长期流行.直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除.后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号.十六世纪法国数学家维叶特用"="表示两个量的差别.可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来.1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受.十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等.大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用.至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了.大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的.。
3.数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetail.aspx?id=31900
4.求小学一年级数学小知识
数学小知识
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号。他认为"*"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。
5.一年级数学小故事50个字
猴子捞帽一群猴子在井旁玩,一阵风将一只猴子的帽子吹到井里,他招呼来18个小伙伴,从井上方的松上一个接一个去捞帽子,有4只猴子没有上树,就捞着了帽子,问:是几只猴子上树下井接在一起把帽子捞上来的?“0”与“1”的小故事在神秘的数学王国里,胖子“0”与瘦子“1”这两个“小有名气”的数字,常常为了谁重要而争执不休。
瞧!今天,这两个小冤家狭路相逢,彼此之间又展开了一场舌战。瘦子“1”抢先发言:“哼!胖胖的'0',你有什么了不起?就像100,如果没有我这个瘦子'1',你这两个胖'0'有什么用?”胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?”“哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!'1+0'还不等于我本身,你哪点儿派得上用场啦?”“去!'1*0'结果也还不是我,你'1'不也同样没用!”“0”针锋相对。
“你……”“1”顿了顿,随机应变道,“不管怎么说,你'0'就是表示什么也没有!”“这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?再比如,直尺上没有我作为起点,哪有你'1'呢?”“再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”
“1”信心十足地说。听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个'0'来占位,你可怎么办?”眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。
这时,“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,'1'、'0'有哪个数比我大?”“这……”胖子“0”、瘦子“1”哑口无言。这时,“9”才心平气和地说:“'1'、'0',其实,只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。
“这才对嘛!团结的力量才是最重要的!”“9”语重心长地说。小松鼠要过冬了冬天到了,小松鼠要准备过冬的粮食了。
有一天小松鼠背着一个大袋子,来到森林里,对松树爷爷说:请吧你的松果送给我,好吗?松树爷爷很大方,说:你想要多少摘多少。小松鼠很高兴,它一边摘一边唱歌,不一会袋子装满了。
松树爷爷问: 你摘了多少个?小松鼠说:哎呀, 我忘了!松树爷爷笑着说“我长了16 个松果,现在还有9个,你能算出摘了多少个,就让你背走。”小松树急了,不会算,怎么办呢?要是松树爷爷不让它背走,那冬天吃什么呢?我来帮它好了。
数学课上,老师讲过:知道总数,求部分数,就是从总数里去掉知道的一个部分数,就得另一部分数,用减法计算。我很快就算出来了,小松鼠摘了16-9=7(个)。
阿凡提的故事这天,阿凡提骑着他那心爱的小毛驴从外面回来,远远就看见家门口站着一高一矮两个人。“阿凡提回来了!”高个子和矮个子都迫不及待地迎上去,请阿凡提为他们算算五个铜币该怎么分。
阿凡提笑着说:“啊,两位先生,我还不知道是怎么回事情,怎么为你们算呢?”这两人说了一阵子,阿凡提把事情弄清楚了。原来这两人今天合伙做饭吃,高个子拿出了200克大米,矮个子拿出了300克大米。
饭做好后,两人正准备吃,忽然来了一个过路人,这个过路人向他们提出了把煮的饭让三个人吃的请求。结果三人一起把饭吃完。
过路人临走时,向高个子和矮个子道谢,还留下了5个铜币作饭钱。可5个铜币两人怎么分呢?矮个子说,他出了300克大米,就拿3个铜币,高个子出了200克大米,就拿两个铜币。
可高个子说,这5个铜币是过路人给他俩的,应该平分,每人拿两个半铜币。两个人算过来算过去,都不知怎样算才对。
阿凡提告诉高个子和矮个子说:“好办。依我看,应当这样分。”
阿凡提说出了他的分法:高个子得1个铜币,矮个子得4个铜币。两人听了非常吃惊,后来在阿凡提讲了这样分法的道理后,他们都很信服,高高兴兴地走了。
小朋友们,你们知道阿凡提为什么要这样分吗?原来是这样的:因为5个铜币是一个人的饭钱,吃饭的是三个人,所以三个人的饭钱应为15个铜币。这顿饭共用500克大米,那么100克大米的价钱应为3个铜币。
高个子出了200克大米,按钱算是6个铜币,他一起吃饭的,应扣饭钱5个铜币,所以他只应得1个铜币。矮个子出了300克大米,按钱算是9个铜币,他也一起吃饭的,也应扣饭钱5个铜币,所以他应得4个铜币。
6.小学一到五年级数学知识重点汇总(详细)
小学五年级全科目课件教案习题汇总语文数学三 单 元 有两个相对的面是正方形,长方体中相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点. 2、正方体的特征:正方体有6个面,这6个面都是正方形,所有的面完全相同;有12条棱,所有的棱长度相等;有8个顶点. 正方体可以看成是长、宽、高都相等的长方体. 3、相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高. 4、长方体或者正方体的12条棱的总长度叫做他们的棱长总和. 长方体的棱长总和=(长+宽+高)*4, 用字母可以表示为=C长方体(a+b+h)4. 正方体的棱长总和=棱长*12,用字母可以表示为=12aC正方体. 5、长方体或者正方体6个面的总面积叫做它的表面积. 长方体的表面积=(长*宽+长*高+宽*高)*2,用字母表示为=(ab+ah+bh)2S长方体. 正方体的表面积=棱长*棱长*6,用字母表示为2=6aS正方体. 6、物体所占空间的大小叫做物体的体积. 计量体积要用体积单位,常用的体积单元有立方厘米、立方分米、立方米,用字母表示为3cm、3dm、3m.3311000dmcm,3311000mdm. 7、棱长是1 cm的正方体,体积是13cm.一个手指尖的体积大约是13cm. 棱长是1 dm的正方体,体积是13dm.一个粉笔盒的体积大约是13cm. 棱长是1 m的正方体,体积是13m.用3根1 m长的木条,做成一个互成直角的架子架在墙角,它的体积是13cm. 8、长方体的体积=长*宽*高,用字母表示为=abhV长方体. 正方体的体积=棱长*棱长*棱长,用字母表示为3=aV正方体. 长方体和正方体的统一公式:支柱体的体积=底面积*高. 9、容器所能容纳物体的体积,叫做它的容积.计量容积一般就用体积单位,计量液体的体积,常用容积单位升和毫升,用字母表示是L和ml. 4 311Ldm,311mlcm,11000Lml 10、长方体或正方体容器的容积的计算方法,跟体积的计算方法相同.但是要从容器里面量出长、宽、高. 11、形状不规则的物体,求他们的体积,可以用排水法.水面上升或者下降的那部分水的体积就是物体的体积. 第 四 单 元 一、分数的意义 1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示. 2、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示.把什么平均分,什么就是单位“1”. 3、把单位“1”平均分成若干份,表示其中的一份的数叫做分数单位.一个分数的分母越大,分数单位越小;一个分数的分母越小,分数单位越大. 4、分数与除法的关系:分数可以表示整数除法的商;除法里的被除数相当于分数中的分子,除数相当于分数里的分母,出号相当于分数线. =被除数被除数除数除数,=分子分子分母分母. 5、求一个数是另一个数的几分之几的解题方法:用除法计算. =一个数一个数另一个数另一个数在解决问题中,要先找出单位“1”和比较量,一般来说,问题中“是”或“占”的后面是单位“1”,前面的比较量,如果没出现这两个字,要根据题意判断, 再根据公式“1=1比较量比较量单位“”单位“” ”计算. 6、低级单位化高级单位(用分数表示)时,等于低级单位的数值两个单位间的进率,能约分的要约成最简分数. 二、真分数和假分数 1、分子比分母小的分数叫做真分数,真分数小于1; 分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于1或等于1; 由整数部分(不包括0)和真分数合成的分数叫做带分数. 2、假分数化成整数或带分数,要用分子除以分母.当分子是分母的倍数时, 5 能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变. 3、带分数化成假分数,用原来的分母做分母,用分母和整数的乘积再加上原来的分子作分子,用式子表示成:+=分母整数分子带分数分母三、分数的基本性质、约分、通分 1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.可以利用分数的基本性质,对分数进行约分或通分,或者把分母化成指定的分母或分子的分数. 2、两个数公有的因数,叫做它们的公因数.其中最大的公因数叫做它们的最大公因数.当两个数成倍数关系时,较小的数就是他们的最大公因数;当两个数只有公因数1时,它们的最大公因数就是1.(公因数只有1的两个数叫做互质数) 3、求两个数的最大公因数,可以用列举法分别列出这两个数的因数,再寻找公有的因数.也可以用短除法计算. 4、分子和分母只有公因数1的分数叫做最简分数. 把一个分数化成和它相等,但分子分母都比较小的分数叫做约分.约分时可以用分子和分母的公因数(1除外)去除,一步步来约分,也可以直接用最大公因数去除,直接约分. 5、两个数公有的倍数叫做它们的公倍数,其中最小的倍数叫做它们的最小公倍数.一般情况下,求一个数的倍数可以用列举法、图示法、大数翻倍法、短除法.当两个数是倍数关系时,大数就是它们的最小公倍数;互质的两个数的最小公倍数是它们的积. 6、把异分母分数分别化成和原来的分数相等的同分母分数,叫做通分. 四、分数和小数的互化 1、小数化分数的方法 小数化成分数时,小数。