数字常识

2021-09-13 综合 86阅读 投稿:徘徊

1. 关于数字的一些小知识

数字的由来 数字可谓是数学大厦的基石,也是人们最早研究的数学对象。

在几百万年前。我们的祖先还只知道“有”、“无”、“多”、“少”的概念,而不知道数为何物。

随着文明的进步,这些模糊不清 的概念无法满足生产、生活的需要。例如我国古书《周易》上就有“ 上古结绳而治”的载 。

即当发生一次重要事件时,就在绳子上打一 个结作为标记。 这种方法虽然简单,但至少表明人们已经有了数的概念。

文字出现以后,人们试图数学以符号的形式记录下来。于是就出现 了各种种样的记录方法。

古埃及人用“|”表示一,用“‖”表示二; 古罗马人用“Ⅰ”表示一,用“Ⅱ”表示二 。这种方法虽然有效, 但 是当数字很大时记录起来十分不便。

例如我们要表示一百时,难道要写 一百个“|”吗?当然,古罗马人也看到了问题的所在 ,于是他们发明 了罗马数字Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ,Ⅹ,L,C 分别表示 1,2,3,4,5,6,7,8,9,10,50,100。看来似乎问题得到了解决, 然而要表示一万还是十分困难。

这也是罗马数字没有被广泛采用的原因。 罗马数字的失败表明,任何想使每一个数字对应一个符号的记数方法都 是徒劳的。

直到公元八世纪印度人发明了一种只含有1,2,3,4,5,6, 7,8,9,九个符号的记数法,并且约定数字位置决定数值大小。例如数 字89中8表示八个十,而9表示九个一。

这样一来表示任何数都是轻而一 举的事情了。于是,这一发明很快被商人带入阿拉伯首都巴格达城。

并 很快得以流传,并称之为阿拉伯数字。由于这一记数法简洁明了,而被 使用至今。

成为世界数学的通用语言。难怪恩格斯称它为“最美妙的发 明”。

************************* 阿拉伯数字的由来 世界各国数字的方法有很多种,其中一种数字是国际上通用的,这就是阿拉伯数字:0、1、2、3、4、5、6、7、8、9。 其实,阿拉伯数字并不是阿拉伯人发明的,而是古代印度人创造的。

古时候,印度人把一些横线刻在石板上表示数,一横表示1,二横表示2……后来,他们改用棕榈树叶或白桦树皮作为书写材料,并把一些笔画连了起来,例如,把表示2的两横写成Z,把表示3的三横写成等。 公元8世纪,印度一位叫堪克的数学家,携带数字书籍和天文图表,随着商人的驼群,来到了阿拉伯的首都巴格达城。

这时,中国的造纸术正好传入阿拉伯。于是,他的书籍很快被翻译成阿拉伯文,在阿拉伯半岛上流传开来,阿拉伯数字也随之传播到阿拉伯各地。

随着东西方商业的往来,公元12世纪,这套数字由阿拉伯商人传入欧洲。欧洲人很喜爱这套方便适用的记数符号,他们以为这是阿拉伯数字,造成了这一历史的误会。

尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。 阿拉伯数字传人欧洲各国后,由于辗转传抄,模样儿也逐渐发生了变化,经过1000多年的不断改进,到了1480年时,这些数字的写法才与现在的写法差不多。

1522年,当阿拉伯数字在英国人同斯托的书中出现时,已经与现在的写法基本一致了。 由于阿拉伯数字及其所采用的十进位制记数法具有许多优点,因此逐渐传播到全世界,为世界各国所使用。

********************************** 阿拉伯数字的由来 古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。

后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。

本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

************************ 罗马数字的由来 罗马数字是一种现在应用较少的数量表示方式。它的产生晚於中国甲骨文中的数码,更晚於埃及人的一进位数字。

但是,它的产生标志著一种古代文明的进度。大约在两千五百年前,罗马人还处在文化发展的初期,当时他们用手指作为计算工具。

为了表示1、2、3、4个物体,就分别伸出1、2、3、4根手指;表示5个物体就伸出一只手;表示10个物体就伸出两只手。这种习惯,人类一直沿用到今天。

人们在交谈中,往往就是运用这样的手势来表示数字的。当时,罗马人为了记录这些数字,便在羊皮上画出Ⅰ、Ⅱ、Ⅲ来代替手指的数,要表示一只手时,就写成"Ⅴ",表示大拇指与食指张开的形状;表示两只手时,就画成"ⅤⅤ",后来又写成一只手向上,一只手向下的"Ⅹ",这就是罗马数字的雏形。

之后为了表示较大的数,罗马人用符号C表示100,C是拉丁字"Century"的头一个字母,century就是100的意思。用符号M表示1000。

M是拉丁字"mile'的头一个字母,mile就是1000的意思。取字母C的一半成为符号L,表示50。

用字母D表示500。若在数的上面画一横线,这个数就扩大。

2. 有谁知道关于数字的知识吗

古代印度人发明了包括“零”在内的十个数字符号,还发明了现在一般通用的定位计数的十进位法.由于定位计数,同一个数字符号因其所在位置不同,就可以表示不同数值.如果某一位没有数字,则在该位上写上“0”.“0”的应用,使十进位法臻于完善,意义重大.十个数字符号后来由阿拉伯人传人欧洲,被欧洲人误称为阿拉伯数字.由于采用计数的十进位法,加上阿拉伯数字本身笔划简单,写起来方便,看起来清楚,特别是用来笔算时,演算很便利.因此随着历史的发展,阿拉伯数字逐渐在各国流行起来,成为世界各国通用的数字阿拉伯数字传入我国,大约是13到14世纪.由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用.本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史.阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了.。

3. 小学数学关于数字的知识

(一)整数 1、分类:自然数、0、…… 2、读、写法 → 数的改写: ⑴ 以“万”或“亿”作单位的数。

例:7645000=764.5万;146000000=1.46亿 ⑵ 省略“万”或“亿”后面的尾数。 例:7645000≈765万;146000000≈1亿 3、大小比较 4、四则运算的意义和法则 ⑴ 加法 意义:把两个数合并成一个数的运算叫做加法。

法则:相同数位对齐,从个位数加起,哪一位上的数满十就要向前一位进一。 ⑵ 减法 意义:已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

法则:相同数位对齐,从个位减起,哪一位上的数不够减,从前一位退一,在本位上加十再减。 ⑶ 乘法 意义:求几个相同加数和的简便运算叫做乘法。

法则:乘数是两位数的乘法,①先用乘数个位上的数去乘被乘数,得数的末位和乘数的个位对齐;②再用乘数十位上的数去乘被乘数,得数的末位和乘数的十位对齐;③最后把两次乘得的积加起来。 ⑷ 除法 意义:已知两个因数的积与其中的一个因数,求另一个因数的运算叫做除法。

法则:除数是两位数的除法,①从被除数的高位起,先用除数试除被除数的前两位数,如果它比除数小再试除前三位数;②除到被除数的哪一位,就在那一位上面写商;③每次除后余下的数必须比除数小。 5、运算定律和性质 ⑴ 定律 ①加法交换律 a+b=b+a ②加法结合律 (a+b)+c=a+(b+c) ③乘法交换律 ab=ba ④乘法结合律 (ab)c=a(bc) ⑤乘法分配律 (a+b)c=ac+bc ⑵ 性质 ①商不变的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

②减法的性质:从一个数中连续减去两个数等于从这个数中减去这两个数的和。 a-b-c=a-(b+c) 6、四则混合运算 ⑴ 第一级运算:通常把加减法叫做第一级运算。

⑵ 第二级运算:通常把乘除法叫做第二级运算。 在一个没有括号的算式里,如只含有同一级运算要从左往右依次计算。

(如例1、例2) 例1:520-160+240-380 =360+240-380 =600-380 =220 例2:125*80÷25*40 =10000÷25*40 =400*40 =16000 ⑶ 不带括号的:一个算式里,如果含有两级运算,要先做第二级运算,在做第一级运算。(如例3) ⑷ 带小括号的:一个算式里,如果有括号,要先算括号里面的,再算括号外面的。

(如例4) ⑸ 带中、小括号的:一个算式里,如果有中括号和小括号,要先算小括号里面的,再算中括号里面的。(如例5) 例3:920-800÷20*5 =920-40*5 =920-200 =720 例4:(42*150-70)÷70 =(6300-70)÷70 =6230÷70 =89 例5:[3440-(150-70)]÷70 =[3440-80]÷70 =3360÷70 =48 7、整除 ⑴ 倍数 → 公倍数 → 最小公倍数(例:24、48……都是8和12的公倍数;其中24是8和12的最小公倍数) ⑵ 约数 → 公约数 → 最大公约数(例:1、2、3、6都是18和24的公约数,其中6是18和24的最大公约数) 质数 → 合数 → 互质数(公约数只有1的两个数,叫做互质数。

例:5和7是互质数) 质因数 → 分解质因数(把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例:42=2*3*7) ⑶ 能被2、5、3整除的数的特征: 能被2整除的数的特征(个位上是0、2、4、6、8的数都能被2整除) 能被5整除的数的特征(个位上是0或5的数都能被5整除) 能被3整除的数的特征(一个数的各位数上的数字和能被3整除,这个数就能被3整除) ⑷ 偶数和奇数 ①偶数(能被2整除的数叫做偶数,如:2、4、6、8、10……) ②奇数(不能被2整除的数叫做奇数,如:1、3、5、7、9……) (二)小数 1、小数的意义:分母是10、100、1000……的十进制分数,改写成不带分母形式的数,叫做小数。

2、小数的读、写法 ⑴ 小数的读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分通常顺次读出每一个数位上的数字。例:6.5读作六点五;0.04读作零点零四。

⑵ 小数的写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。例:四点三九写作:4.39;三十点零一五写作:30.015。

3、小数的分类 ⑴ 按整数部分情况分:纯小数、带小数; ⑵ 按小数部分情况分:有限小数、无限小数; 无限小数分为:循环小数和不循环小数。 循环小数:例2.3333……写成2.3(选学) 4、小数大小的比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大…… 5、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。

6、小数与分数的相互改写。 7、小数点位置的移动引起小数大小的变化。

8、四则运算的意义和法则。(同整数) 9、运算定律和性质。

(整数运算定律和性质对小数同样适用) 10、四则混合运算。(同整数四则混合运算) (三)分数 1、分数的意义:把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。

2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

3、分数与除法的关系:被除数相当于分数。

4. 关于数字的常识

中国古典四大名著:《三国演义》、《水浒传》、《红楼梦》、《西游记》五大奇书——《三国演义》、《水浒传》、《西游记》、《金瓶梅》、《石头记》(即〈红楼梦〉) 古都并称演变 * 早期有 四大古都 的说法,四大古都指 西安 、洛阳 、南京 、北京 。

* 二十世纪三十年代起, 开封 和西安、洛阳、南京、北京一起并称为 五大古都 。 * 二十世纪四十年代起, 杭州 和西安、洛阳、南京、北京、开封一起并称为 六大古都 。

* 二十世纪八十年代起, 安阳 和西安、洛阳、南京、北京、开封、杭州一起并称为 七大古都 。 附:三 易——《连山》、《归藏》、《周易》 三 礼——《周礼》、《易礼》、《礼记》 三公奇案——《包公案》、《施公案》、《鹿洲公案》 四 书——《大学》、《中庸》、《论语》、《孟子》 四 梦——《南柯》、《还魂记》(又名〈牡丹亭〉)、《紫钗记》、《邯郸记》 四 大 千——《太平御览》、《册府元龟》、《文苑英华》、《全唐文》 五 经——《诗》、《书》、《礼》、《易》、《春秋》 六 艺——礼、乐、射、御、书、数六种学问和技能。

另有一种说法:《诗》、《书》、《礼》、《乐》、《易》、《春秋》六种经书为六艺 十 通——《通典》、《通志》、《文献通考》、《续通典》、《续通志》、《续文献通志》、《清通典》、《续清文献通考》 十才子书——《三国演义》、《好逑传》、《玉娇梨》、《平山冷燕》、《水浒传》、《西厢记》、《琵琶记》、《白圭志》、《斩鬼传》、《驻春园小史》 二十四史——前四史:《史记》、《后汉书》、《汉书》、《三国志》 二十史:《晋书》、《宋书》、《南齐书》、《梁书》、《隋书》、《陈书》、《后魏书》、《北齐书》、《周书》、《南史》、《北史》、《新唐书》、《新五代史》、《宋史》、《辽史》、《金史》、《元史》、《明史》、《旧唐书》、《永乐大典》中的《旧书代史》。

5. 数学常识

缺8数

人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:

12345679*9=111111111

12345679*18=222222222

12345679*27=333333333

……

12345679*81=999999999

这些都是9的1倍至9的9倍的。

还有99、108、117至171。最后,得出的答案是:

12345679*99=1222222221

12345679*108=1333333332

12345679*117=1444444443

… …

12345679*171=2111111109

回文数

中文里,有回文诗句、对联,如:"灵山大佛,佛大山灵","客上天然居,居然天上客"等等,都是美妙的符合正念倒念都一样的回文句.

回文数则是有类似22、383、5445、12321,不论是从左向右顺读,还是从右向左倒读,结果都是一样的特征.许多数学家着迷于此。

回文数中存在无穷多个素数11,101,131,151,191……。除了11以外,所有回文素数的位数都是奇数。道理很简单:如果一个回文素数的位数是偶数,则它的奇数位上的数字和与偶数位上的数字和必然相等;根据数的整除性理论,容易判断这样的数肯定能被11整除,所以它就不可能是素数。

人们借助电子计算机发现,在完全平方数、完全立方数中的回文数,其比例要比一般自然数中回文数所占的比例大得多。例如112=121,222=484,73=343,113=1331……都是回文数。

人们迄今未能找到四次方、五次方,以及更高次幂的回文素数。于是数学家们猜想:不存在nk(k≥4;n、k均是自然数)形式的回文数。

在电子计算器的实践中,还发现了一桩趣事:任何一个自然数与它的倒序数相加,所得的和再与和的倒序数相加,……如此反复进行下去,经过有限次步骤后,最后必定能得到一个回文数。

6. 小学数学知识集锦

小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。

(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。

(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。

(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。

(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所。

7. 生活中有哪些数学小常识啊

这是一个有趣的数学常识,做数学报用上它也很不错。

人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:

12345679*9=111111111

12345679*18=222222222

12345679*27=333333333

……

12345679*81=999999999

这些都是9的1倍至9的9倍的。

还有99、108、117至171。最后,得出的答案是:

12345679*99=1222222221

12345679*108=1333333332

12345679*117=1444444443

… …

12345679*171=2111111109

也是“清一色

8. 六年级数学中数的知识整理

第一章 数和数的运算 一 概念 (一)整数 1 整数的意义 自然数和0都是整数。

2 自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3*5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。

两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 …… 3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数 1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。

数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类 纯小数:整数部分是零的小数,叫做纯小数。

例如: 0.25 、0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。

例如: 3.25 、5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。

例如: 41.7 、25.3 、0.23 都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如: 4.33 …… 3.1415926 …… 无限不循环小数:一个数的小数部分,数字排列无规律且位数无。

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除