1.数学史上关于“圆的面积”的数学小知识
人们常说:一把钥匙,开一把锁。当你拿起另外一把相似的钥匙想打开这把锁时,你不认为着拿错了钥匙,却意味着眼下的锁头与钥匙磨合不到位。
关于圆面积的数学小知识,中外史上都在借助“正6x2ⁿ边形面积πR²或πr²”这把钥匙想打开圆面积这把锁,不是拾错了钥匙吗?
πR²或πr²的推理是给圆的内接或外切正6x2ⁿ边形,随着n的无穷大的推理。n的无穷大依然是正6x2ⁿ边形的面积对圆面积无关。
根据面积“软化”等积变形公理发现:如果圆面积是7a²,那么它的外切正方形面积就是9a²,为此推出"圆面积等于直径3分之1平方的7倍"。圆的面积公式: s=7(d/3)²。
2.外国史上有关于圆面积的数学小知识
人们常说:一把钥匙,开一把锁。
当你拿起另外一把相似的钥匙想打开这把锁时,你不认为着拿错了钥匙,却意味着眼下的锁头与钥匙磨合不到位。关于圆面积的数学小知识,中外史上都在借助“正6x2ⁿ边形面积πR²或πr²”这把钥匙想打开圆面积这把锁,不是拾错了钥匙吗?πR²或πr²的推理是给圆的内接或外切正6x2ⁿ边形,随着n的无穷大的推理。
n的无穷大依然是正6x2ⁿ边形的面积对圆面积无关。根据面积“软化”等积变形公理发现:如果圆面积是7a²,那么它的外切正方形面积就是9a²,为此推出"圆面积等于直径3分之1平方的7倍"。
圆的面积公式: s=7(d/3)²。
3.【总结圆的面积有关知识点】
圆的特征:圆是由一条曲线构成的封闭图形, 圆上任意一点到圆心的距离相等。
圆心和半径的作用:圆心决定圆的位置,半径 决定圆的大小 。 圆是轴对称图形,直径所在的直线是圆的对称 轴。
圆有无数条对称轴 。 同一圆中直径是半径的2倍 圆的周长指围成圆的曲线的长。
长就大,直径小的圆周长就小 圆的周长除以直径的商是一个固定的数,我们 把它叫做圆周率,用π表示,计算时通常取3.14 圆的周长:C=2πr或C=πd 求半径:r=C/2π 求直径:d=C/π 圆的面积意义:圆形物体,图形所占平面大小 或圆形物体表面大小是圆的面积 。 面积计算公式:π*r的平方 圆环面积计算方法:S=πR的平方-πr的平方或 S=π(R的平方-r的平方) (R是大圆半径,r是小圆半径)。
4.总结圆的面积有关知识点
圆的特征:圆是由一条曲线构成的封闭图形, 圆上任意一点到圆心的距离相等。
圆心和半径的作用:圆心决定圆的位置,半径 决定圆的大小 。 圆是轴对称图形,直径所在的直线是圆的对称 轴。圆有无数条对称轴 。 同一圆中直径是半径的2倍
圆的周长指围成圆的曲线的长。
长就大,直径小的圆周长就小
圆的周长除以直径的商是一个固定的数,我们 把它叫做圆周率,用π表示,计算时通常取3.14
圆的周长:C=2πr或C=πd 求半径:r=C/2π 求直径:d=C/π
圆的面积意义:圆形物体,图形所占平面大小 或圆形物体表面大小是圆的面积 。 面积计算公式:π*r的平方
圆环面积计算方法:S=πR的平方-πr的平方或 S=π(R的平方-r的平方) (R是大圆半径,r是小圆半径)
5.圆的面积推导过程是用数学上的什么思想
圆的面积s=7(d/3)²的推导过程是用数学史上从来没有过的“软化等积变形”的方式,俗称软化思想。(d表示直径)
例如:已知一块长7米、宽1米、高1米的橡皮泥它的体积是7立方米。当软化等积变形形成高1米的一个圆柱体时,它的上低或下低的圆面积必然是7平方米。也就是面积由7平方米的长方形(长7米、宽1米)软化等积变形转化成面积是7平方米的圆了。在给面积为7平方米的圆做一个外切正方形,把圆面积再次在外切正方形内软化等积变形,看它能占外切正方形面积的几分之几推出的。而πR²和πr²是用逼近的方式,极限的思想。
因为矩形面积πR²随着无限等分的小扇面携带着弧外的空位角反转化成的却是圆外切正6x2ⁿ边形面积,必然大于圆面积s;πr²随着无限等分的小扇面会丢掉弧与弦之间的小伞面反转化成的却是圆内接正6x2ⁿ边形面积,必然小于圆面积。
6.谁有关于圆的周长与面积的小知识,资料等等
【圆的平面几何性质和定理】 一有关圆的基本性质与定理 ⑴圆的确定:不在同一直线上的三个点确定一个圆。
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等; ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③S三角=1/2*△三角形周长*内切圆半径 ④两相切圆的连心线过切点(连心线:两个圆心相连的线段) 〖有关切线的性质和定理〗 圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。 切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。 切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
〖有关圆的计算公式〗 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180 4.扇形面积S=nπr^2;/360=rl/2 5.圆锥侧面积S=πrl [编辑本段]【圆的解析几何性质和定理】 〖圆的解析几何方程〗 圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。 圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。 圆的离心率e=0,在圆上任意一点的曲率半径都是r。
〖圆与直线的位置关系判断〗 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4acx2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圆心坐标为(-D/2,-E/2) 其实不用这样算 太麻烦了 只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F)。