1.数学小论文5篇
我只能帮你一篇
数学论文“神奇的莫比乌斯圈”
莫比乌斯圈是一种只有一个面,一条线的曲面。
数学历史上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?许多人绞尽脑汁也没有想出来,他们觉得:如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不过这样就不符合涂抹的要求了。
对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。
数学中的知识,很多都来自生活
2.写一篇关于“生活数学”的小论文
数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。
这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。
这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。
仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47*5=244,把首项加末项的和乘项数除以2,(9+244)*48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)*48÷2*2+(2+49)*48÷2*2+(3+50)*48÷2*2=6072。
这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)*5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)*5+4*48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘。
3.【写一篇关于数学的小论文,要怎么写啊
你翻看原来的数学英语是很多,但因为现在只是部分联系,并不是全部都有关联,所以要补也不太难,主要是你有恒心坚持.并且你才读初二,要补很容易.我也是个初二的学生.成绩还不错.我有个同学,初一数学中等,在初二猛升到班上第二,把所有同学都吓了一大跳.问他怎么办到的,他说就是上课认真听,回家多做习题,把不会的都弄懂了.你现在不需要把初一全部知识来复习,只要老师教到哪里的相关知识点复习弄懂来,多问问你的家庭老师.多做数学习题是非常重要的.物理说什么和数学关系很大,其实并不是那么大(我也读初二,所以我有切身体会).其实就是关于速度那一节,需要公式计算什么的,之后的光啊力啊,反而和正在学习的初二数学有关,而无关你的"基础不好".但有个很重要的就是,数学主要是一些基本公式,然后多要靠自己去想,你是不是总认为"我基础不好肯定想不出来,即使想出来也要花那么多时间,干脆不想了"?实际物理和数学的关系并不是太大,否则干嘛要把物理叫物理而不和数学合并?数学就是靠多想多扩展.你养成经常思考的习惯,不管想不想得出来,你都要思考,如果一道题目你自己认真想了25分钟以上都想不出来,那就一定要去请教老师,以免浪费时间.数学物理题目都是类型题,掌握基本类型,考试就不会太难.你不要想着飞跃,而要注意当下的进步,即使再微小,也要当作动力坚持下去. 至于英语,主要是基本语感和单词.你注意到没有,一些同学面对一些不太难但没教过的英语题目(比如用TO,FOR,OF,AT,IN这样介词的用法)时,也能够回答正确?这就是靠基本的语感,而语感就围绕"熟能生巧"发展.你需要做的是鼓励自己多听多读多写,要背一些初一的基础语法(初一英语内容不多).同时上课不管听不听得懂都要强迫自己听下去,渐渐就会懂了.(或者是懂多少算多少, 总不可能一节课下来你一丁点也听不懂吧?)还有,单词非常重要.最好把常用的初一学过的单词背熟(少用的就不用了,浪费时间),再把现在书本的词语背好,渐渐就会减小差距,将水平拉上,提高成绩了. 至于痴迷网络,这是别人无法帮助到的,只能靠自己了.可以用"切断后路"的方法.就是把家里电脑宽带退掉,把多余的钱交给父母保管,防止忍不住跑去网吧,久了就会淡了.初一暑假那会我迷得可厉害了,最后渐渐淡了,现在也不太在意了.真的,什么事情时间久了,就不会那么在意了.如果是舍不得游戏,那就别玩,卖号什么的,要狠下心来. 篮球可以打啊,注意时间.放学打打就好,别花太多时间在上面.因为篮球是运动,对身体好,再说男生都爱玩篮球的嘛.。
4.我要一篇数学小论文
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
5.我生活中的数学论文
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中.比如说,上街买东西自然要用到加减法,修房造屋总要画图纸.类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题.我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算.评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识.从这以后,我开始有意识的把数学和日常生活联系起来.有一次,妈妈烙饼,锅里能放两张饼.我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来.然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定.我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的.看来,我们必须学以致用,才能更好的让数学服务于我们的生活.数学就应该在生活中学习.有人说,现在书本上的知识都和实际联系不大.这说明他们的知识迁移能力还没有得到充分的锻炼.正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视.希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处.。
6.有关数学的小论文
篮球场上的数学 一个星期天的早晨,我和我的朋友一起去打篮球。
过了一会儿,我们俩打累了,就到观众席上去休息。突然间,我想到了一个问题,我就禁不住说出来:“小明一分钟投8个球,小红一分钟投6个球,他们一起投了8分钟之后,小红提高命中率一分钟投8个球,小明由于体力不支减少投球只数一分钟投6个球,问多少分钟后小红和小明投进的只数相同?” 大概是我朋友太累的缘故,这么简单的问题他都答不上来,他想了一会儿没做出来,过了好长时间他还是没想出来。
时间一分一秒的过去了,他实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算他有草稿也未必做得出来。
我自豪地说:“原来小明一分比小红多投进2个,一共投了8分钟,也就是8*2=16(个),后来小红反过来每分比小明多投4个,那么16个球要多投几分钟呢?16÷4=4(分),要4分钟才能追上。”他说:“你真厉害!”“我是天才嘛!”我开玩笑说。
我俩都笑了。 通过这件事,我发现生活中的数学是无处不在,生活中、学习中、还有工作中到处都有。
从此,我就更加喜欢数学了。
7.写一篇关于“生活数学”的小论文
让课堂生活化的几点随想 把数学与儿童生活实际联系起来,可以让学生看到生活中处处充满数学,学生学起来也亲切、自然。
然而,在以往的小学数学教学中,教师非常重视数学知识的传授,但很少关注数学知识和学生的实际生活有哪些联系。教师讲完新课就做书后面的练习,练习做了一题又一题。
而学生也还只会按类型解题,不懂得怎么应用,既不知道数据从哪里来,又不知道解决某个问题需要哪些数据、怎样获得数据。因此,学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节。
如何改变这一现状呢? 新大纲明确指出:义务阶段的数学教育必须是使学生获得适应未来社会的进一步发展必需的重要的数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;学生的数学学习内容应当是现实的、有意义的、富有挑战性的;数学知识来源于生活,生活离不开数学,数学与生活是无法剥离的,我们在课堂上要联系生活实际,在习题的编拟上也要贴近生活,让学生从熟知、亲近、现实的生活数学走进学生视野,使之产生亲近感,变得具体而生动,诱发学生动手、动口又动脑,想办法来探求解决问题的过程,增强其学习的主动性,发展求异思维,培养实事求是的科学态度和探索、创新的精神,实现我们的数学生活化。本人就结合《圆锥体的体积》这课谈谈怎样让课堂生活的几点体会。
一、联系生活,导入新课。每节课开始的导入就好比戏的序幕,如果设计和安排得合理,就能引发学生的兴趣,开启思维的闸门。
同时,《数学课程标准》明确指出:数学教学要密切联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,……。因此,在教学过程中,教师要善于挖掘生活中的数学素材,联系学生的 生活实际,使学生发现数学就在自己身边,感受数学的趣味和作用,对数学产生亲切感 ,唤起学生的学习兴趣教学片断一:教师出示录像:( 几位农民把打完稻谷稻草堆成一个圆锥体草堆的情境)。
师:这些农民叔叔在干什么呀?生:他们在堆草堆。师:他们把草堆成了什么形状?生:圆锥体师:你们知道他们为什么要把草堆成圆锥形吗?生:因为把草堆成圆锥形,下雨的时候,雨水就会顺着圆锥的侧面流下来,草堆里面就不进水,就像我们的伞一样,雨水顺着伞流下来。
师:能不能把它堆成其它的形状呢?生:不能。师:求这堆草的体积,就是求什么?出示课题:今天我们就来研究“圆锥的体积”师:在这堂课上,你希望学到哪些知识?生1:我想知道圆锥体积的推导方法。
生2:我想掌握圆锥体积的计算方法。生3:我想知道圆锥体在现实生活中有什么作用。
生4:我希望能够运用圆锥体积的计算方法解决一些实际问题。……师:好的,就让我们一起努力,实现我们的目标吧!上面的情境导入虽然说城市的小孩子很少亲眼见面,但是电视、电影里经常见到,在一次春游时候他们还见到过,学生问草堆为什么都是堆成圆锥形的,能不能堆成其它的形状呢?所以在上这节课的时候,我就再一次把这个问题拿出作为导入,一方面,让学生知道圆锥是现实生活中到处可见的。
另一方面,让学生知道圆锥还有它独特的作用。从而提高学生学习的兴趣。
在学生的生活世界中,充满着许多学生熟悉的自然事物、社会事物中,人的生活中,我们只人细心观察,就可以从中找到问题的原型,然后将教材中的问题融入这个原型,对教材进行生活化,课堂就就会充满生活气息,学生在学习的过程中感受到数学学习的意义,体会到数学学习的价值,从而提高学习的积极性。 二、体验生活,理解新知。
数学的产生源自于生活实践,数学的教学同样离不开实际的生活。因此数学课程的内容“应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、试验、猜测、验证、推理与交流”。
在教学要求中使学生感受数学与现实生活的联系,不仅要求选材必须密切联系学生生活实际,而且要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会。 片断二:教师出示“削铅笔”的示意图:削之前,铅笔的一段是圆柱形,削之后,这一段变成了圆锥形。
师:铅笔的一段削过后,什么变了,什么没变?从中你发现了什么?生:铅笔的一段由圆柱变成了圆锥形,但这个圆锥形与圆柱形等底等高。可以看到,圆锥的体积是和它等底等高的圆柱的体积的一部分。
师:如果已知圆柱的体积,求和它等底等高的圆锥体积,需要知道什么?生:需要知道圆锥体积是和它等底等高的圆柱体积的几分之几。师:你希望通过什么办法,弄清圆锥体积是和它等底等高的圆柱体积的几分之几?生:通过实验。
师:应该怎么做试验呢?看看书本能给我们带来什么启示。(阅读书上的实验方法)生阅读书上的实验方法师:书上所做的实验,为什么一定要用等底等高的圆柱和圆锥呢?师:如果给你相应的材料,你能做书的的实验吗?生:能。
开始做实验……首先通过学生经常做的事“削铅笔”这个示例,明白圆锥体的积是和它等底等高的圆柱的体积有关。再通过把盛满水的圆锥体容器倒向等。
8.数学小论文 主题:生活中的数学
原发布者:中国学术期刊网
生活中的数学论文:生活中的数学学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋须要画图纸,分苹果、烙饼子,类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我们要到生活中学数学,在生活中用数学,数学与生活密不可分。新课程《标准》提倡人人学有价值的数学,事实上是与学生的现实生活和以往的知识体验有密切关系的数学;是学生用来解决生活中一些实际问题的数学,也就是生活中数学。如何做到人人学有价值的数学,也就是学习生活中的数学,我谈谈我的一点体会。一、从学生自己熟悉的生活背景中发现数学,掌握数学和运用数学如在教学整百整千数加法时。我课前把学生最熟悉的“中百仓储”购物的情景录下来播放:,当学生看到这一情景时,个个都兴奋不已,因为“中百仓储”是大家再熟悉不过的购物场所,学生感到特别亲切。接着又把学生引入到中百仓储的家电区,观察这些家电的价格,让学生自由提出用加法计算的数学问题。学生非常投入,发言踊跃极了。二、让学生在操作中学习有价值的数学由于小学生的生活经验和事物相互联系的知识比较缺乏。让学生在操作中亲身经历和感受生活中的数学,在他们的心中烙下了深刻的印象,也学得深,记得牢。如在教学“粉刷围墙中的问题”时,我带领学生亲自动手测量围墙的长和高,在测量中,不仅巩固了有关
9.【数学小论文作文】
数学小论文大千世界,数学无处不在。
真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。
我的肚子莫名其妙地奏起了狂响曲,“好饿啊——”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。
谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。
“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。
“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。
“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。
于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。过了一会儿,我终于豁然开朗,我不能用量杯,先在里面装些水,记下水位。
随后把那个苹果放入水中,此时的水位上升了不少,再记下上升后的水位。最后用上升后的水位,减去先前的水位,不就算出苹果的体积了吗?我高兴极了,向妈妈汇报了实验结果,妈妈这回是满意的笑了。
我大口地啃着苹果,这正是最甜美的食物!数学无处不在,你说是吗?。
10.数学小论文,2000字以上 急
精彩回答检举| 2011-05-27 22:24数学是研究数量、结构、变化以及空间模型等概念的一门学科。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。
虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。
数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。
布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。数学分类 符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。
此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。
在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。
它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。
亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。
但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。
严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。
这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。
牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。
当大量的计量难以被验证时,其证明亦很难说是有效地严谨。中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。
在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。
他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。
他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖暅原理;提出二次与三次。