1.【给几个数学小故事、知识.简短
唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?2数字趣联宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.3点错的小数点学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.。
2.【求一些数学小知识一定要在200字以内.100字以上,要么别回答
数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系.数学符号的发明和使用比数字晚,但是数量多得多.现在常用的有200多个,初中数学书里就不下20多种.它们都有一段有趣的经历.例如加号曾经有好几种,现在通用"+"号."+"号是由拉丁文"et"("和"的意思)演变而来的.十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号."-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了.到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号.乘号曾经用过十几种,现在通用两种.一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的.德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号.他自己还提出用"п"表示相乘.可是这个符号现在应用到集合论中去了.到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号.他认为"*"是"+"斜起来写,是另一种表示增加的符号."÷"最初作为减号,在欧洲大陆长期流行.直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除.后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号.十六世纪法国数学家维叶特用"="表示两个量的差别.可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来.1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受.十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等.大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用.至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了.大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的.数学的起源和早期发展:数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证. 古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.。
3.数学小知识或小故事 50字左右100字以内
古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。
虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。
在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。
作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。
认为普通几何学有一个辉煌开端的推测是肤浅的。
4.数学小短文100字
分饼干:
过年了,我们准备回老家了。我和爸爸妈妈去商场买饼干,我们买了很多饼干,准备送给表哥、表姐和表弟。爸爸说:“我们把饼干分成三堆吧。”应该怎么分呢?奶奶说把饼干一个一个的分,我觉得太慢了;爷爷说先数一数再用除法分成三堆,但是也太慢了;我说还是五个五个的分吧,最后我很快就把一袋子饼干分成了均等的三份。爷爷、奶奶、爸爸、妈妈都夸我是个聪明的好孩子。
分类:
今天,上数学课学习了“分类”,老师说:把同一类的东西放在一起就是分类。分类可以按单一的标准分,也可以按不同的标准分。听到这,我想起上星期妈妈带我到“香江商场”买东西,我发现牙膏放在同一个架上,而且同一排的几层都是牙膏,饮料也放在另一排的架上。我看到那么多的饮料,我都喜欢,真想喝个够!妈妈看到我嘴馋,微微地笑了,我马上把我的发现告诉了妈妈,妈妈就说:“为了让客人容易找到东西,商场的工作人员就把同一类的东西放在一起。”我现在终于明白商场是分类整理商品的。原来数学知识就在我的身边,谢谢老师了!
开心加减数
过新年了,我和爸爸、妈妈到商场买年货,买了好多很好吃的东西回家。有瓜子,有糖果,有蛋卷。还有我喜欢吃的开心果。我很想吃开心果,就对妈妈说:“妈妈,我要吃开心果。”妈妈说:“吃吧!不过你要一边吃一边学习数学课上的加法和减法的呀!”我说:“好!”于是,我从罐子里面拿了一把开心果放在桌子上,数了一次,共有10颗,接着我再拿了一把开心果出来,数一数共有12颗。两把加起来一共22颗。然后我剥掉了其中的9颗吃下肚子了。我想一想一共拿22颗,我吃了9颗,就等于22减掉了9就等于13,剩下了13颗开心果。我想,爸爸妈妈也要吃开心果,就跟爸爸、妈妈说:“你们也来吃开心果吧!”爸爸妈妈都夸我真是一个乖孩子。
姥姥家的小动物
姥姥家有许多小动物,有三只小羊、一只羊妈妈、一只小狗、一只小猫,还有五只小白兔、五只母鸡,呀,真多,一共十六只动物。我最喜欢那五只小白兔,浑身长着雪白的长毛,像穿了件白色的棉衣,我想小白兔在冬天肯定不会冷。它的两个长耳朵像把张开的剪刀,它的眼睛是红色的,像两个红樱桃。小白兔的嘴巴很特别,长着三瓣嘴唇,周围还有几根胡须,样子非常可爱
开学准备
今天妈妈给我买了一些学习用品,有书皮、皮筋、生字本。书皮共有5个,包了3本新书,还剩2个书皮。我们把下册的字卡分开,每一课用1个皮筋套起来,一共套了20课,原来妈妈买了20个皮筋。一共40课,还需要买20个皮筋才够用。
5.关于数学的小知识
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。
他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。
七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。
同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。
经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。
数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。
隔年,高斯进入Braunschweig学院。这年,高斯十五岁。
在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。
最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m*3n*5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。
但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k * (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。
像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。
「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。
它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。
必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。
高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。
他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。
这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。
1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的。
6.数学小故事 100字
1、数学天才高斯小时候的故事 高斯在小学二年级时,有一次老师教完加法后想休息一下,所以便出了一道题目要求学生算算看,题目是: 1+2+3+4………+96+97+98+99+100=? 本以为学生们必然会安静好一阵子,正要找借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是怎么算的吗?高斯告诉大家他是如何算出的:将1加至100与100加至1;排成两排想加,也就是说: 1+2+3+4+…………+96+97+98+99+100+ 100+99+98+97+96+…………+4+3+2+1 =101+101+101+…………+101+101+101+101 共有一百个101,但算式重复两次,所以把10100除以2便得到答案等于5050。
从此以后高斯小学的学习过程早已经超过了其他的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才。 2、鸡兔同笼 这个问题,是我国古代著名趣题之一。
大约在1500年前,《孙子算经》就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。
因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。
化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。 3、数学小故事 门打开了,进来的是一个年轻的小伙子。
刘建明先生请他坐下,小伙子自我介绍说:“我是内地的导游,叫于江,这次我带领了个旅游团到香港来旅游,听说您的大酒店环境舒适,服务周到,我们想住你们酒店。” 刘建明先生连忙热情地说:“欢迎,欢迎,欢迎光临,不知贵团一共有多少人?” “人嘛,还可以,是个大团。”
刘建明先生心里一阵惊喜:一个大团,又一笔大生意,真是太好了。作为一名导游,于江看出刘建明先生的心思,他记上心来,慢条斯理的说:“先生,如果你能算出我们团的人数,我们就住您们大酒店了。”
“您请说吧。”刘建明先生自信的说。
“如果我把我的团平均分成四组,结果多出一个人,再把每小组平均分成四份,结果又多出一个人,再把分成的四个小组平均分成四份,结果又多出一个人,当然,也包括我,请问我们至少有多少人?” “一共多少呢?”刘建明先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,应该如何下手呢?”他不愧是精明的生意人,很快就知道了答案:“至少八十五人,对不对?” 于江先生高兴地说:“一点都不错,就是八十五个人。请说说你是怎么算的?” “人数最少的情况下是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1*4+1=5(人),第二次分之前有5*4+1=21(人),第一次分之前有21*4+1=85(人)” “好,我们今天就住这里了。”
“那你们有多少男的和女的?” “有55个男的,30个女的。” “我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?” “当然是先生您给安排了,但必须男女分开,也不能有空床位。”
又出了个题目,刘建明还从没碰到过这样的客人,他只好又得花一番心思了。冥思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房间,一间5人房间;女的一间11人房间,两间7人房间,一间5人的,一共11间。
于江先生看了他的安排后,非常满意,马上办理了住宿手续。一桩大生意做成了,虽然复杂了点,但刘建明先生心里还是十分高兴的。
4、智斗猪八戒 话说唐僧师徒西天取经归来,来到郭家村,受到村民的热烈欢迎,大家都把他们当作除魔降妖的大英雄,不仅与他们合影留念,还拉他们到家里作客。 面对村民的盛情款待,师徒们觉得过意不去,一有机会就帮助他们收割庄稼,耕田耙地。
开始几天猪八戒还挺卖力气,可过不了几天,好吃懒做的坏毛病又犯了。他觉得这样干活太辛苦了,师傅多舒服,只管坐着讲经念佛就什么都有了。
其实师傅也没什么了不起的,要不是猴哥凭着他的火眼金睛和一身的本领,师傅恐怕连西天都去不了,更别说取经了。要是我也有这么一个徒弟,也能有一番作为,到那时,哈哈,我就可以享清福了。
于是八戒就开始张落起这件事来,没几天就召收了9个徒弟,他给他们取名:小一戒、小二戒…小九戒。按理说,现在八戒应该潜心修炼,专心教导徒弟了。
可是他仍然恶习不改,经常带着徒弟出去蹭吃蹭喝,吃得老百姓叫苦不迭。老百姓想着他们曾经为大家做的好事,谁也不好意思到悟空那里告状。
就这样,八戒们更是有恃无恐,大开吃戒,一顿要吃掉五、六百个馒头,老百姓。