1.小学数学知识问答300例
1、下面的年份中,闰年的年份有( )个。
1994年 1996年 2000年 2003年 2008年 2010年 ①3 ②2 ③4 2、一项工程甲队单独做要15小时完成,乙队单独做4小时完成这项工程的 。( )的工作效率高。
①甲工程队 ②乙工程队 ③无法确定 3下列图形中,有一条对称轴的是( ),对称轴最多的是( )。 ①正方形 ②等边三角形 ③等腰梯形 ④圆 4、小芳和小军放学后从学校同时回家,小芳每分钟 行 60米 ,小军每分钟行 70米 ,5分钟后同时到家。
小芳家到小军家的距离列式为( )。 ①60+70 ②(60+70)*5 ③60*5 ④70*5 本数3、五(1)两个小组的同学在学校举行的献爱心活动中捐书的情况如下表: 比一比,哪组同学平均每人捐得本数多一些?(除不尽时得数保留一位小数) 4、小燕子2小时飞行 120千米 。
照这样的速度,小燕子从甲地到乙地共飞行了5小时。甲、乙两地间的距离是多少千米?(分别按下面的要求用两种不同的方法解。)
(1)想:根据等量关系式:( )*( )=( )。 用算术方法解: (2)想:根据“照这样的速度”,就是说汽车行驶的( )一定,行驶的( )和( )成( )比例关系。
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元? 8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只? 9、.学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米? 10、一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?11、一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?12.一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?13、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?14、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?15、做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克? 16、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?17、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?18、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?19、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?20、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元? 21、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。
爸爸为笑笑存的教育储蓄基金的本金是多少?22、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了? 23、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?24、比5分之2吨少20%是( )吨,( )吨的30%是60吨。25、一本200页的书,读了20%,还剩下( )页没读。
甲数的40%与乙数的50%相等,甲数是120,乙数是( )。26、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?27、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?28、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?29、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。
30、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?您现在的位置: 仙居小学数学网 >> 试题集锦 >> 六年级 >> 正文 小学数学夏令营试题(六年级)作者:佚名 文章来源:转载 点击数:308 更新时间:2009-12-9 19:23:021.一个三位数除以9余7,除以5余2,除以4余3。这样的三位数共有________个。
2.每千克价分别为2元、3元、2元4角、4元的桔子、苹果、香蕉、柿子四种水果共买了83千克,用去228元。已知买桔子用去的前与买苹果用去的钱一样多,买柿子用去的。
2.小学数学小常识
这是一个有趣的数学常识,做数学报用上它也很不错。
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:
12345679*9=111111111
12345679*18=222222222
12345679*27=333333333
……
12345679*81=999999999
这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是:
12345679*99=1222222221
12345679*108=1333333332
12345679*117=1444444443
… …
12345679*171=2111111109
也是“清一色
3.数学趣味知识,问答,详细点
1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。
在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。
这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?2、有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。
河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。
但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。
于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。在静水中,渔夫划行的速度总是每小时5英里。
在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。
例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?3、一架飞机从A城飞往B城,然后返回A城。
在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。
如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”
“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。
下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。
每间住了人的客房每日所需服务、维修等项支出共计40元。问题:我们该如何定价才能赚最多的钱?6、说一人在市场上花7块钱买了一只鸡,然后他又以8块钱把鸡卖了,之后他觉得卖亏了,于是9块钱把鸡买回来,然后又以10块钱把鸡卖了。
问这人赚了多少钱?答案对号入座1、答案每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。
但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯•诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)
提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯•诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道2、答案由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。
虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。
渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.3、答案怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。
这是对的。但是,他说这股风对飞机整个往返飞行的平均。
4.谁能把小学一至六年级数学知识点详细的列出来
数学概念整理: 整数部分: 十进制计数法;一(个)、十、百、千、万……都叫做计数单位。
其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。
这种计数方法叫做十进制计数法 整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。
整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。 整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。
小数部分: 把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数 小数的读法:整数部分整数读,小数点读点,小数部分顺序读。 小数的写法:小数点写在个位右下角。
小数的性质:小数末尾添0去0大小不变。化简 小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。
小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。 分数和百分数 ■分数和百分数的意义 1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。
在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。 2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。
百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。 3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。
4、成数:几成就是十分之几。 ■分数的种类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数 ■分数和除法的关系及分数的基本性质 1、除法是一种运算,有运算符号;分数是一种数。
因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。 2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。 ■约分和通分 1、分子、分母是互质数的分数,叫做最简分数。
2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。 3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
■倒 数 1、乘积是1的两个数互为倒数。 2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
3、1的倒数是1,0没有倒数 ■分数的大小比较 1、分母相同的分数,分子大的那个分数就大。 2、分子相同的分数,分母小的那个分数就大。
3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。 4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
■百分数与折数、成数的互化: 例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。 ■纳税和利息: 税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。由银行规定按年或按月计算。
利息的计算公式:利息=本金*利率*时间 百分数与分数的区别主要有以下三点: 1.意义不同。百分数是“表示一个数是另一个数的百分之几的数。”
它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”
因此,百分数后面不能带单位名称。分数是“把单位'1'平均分成若干份,表示这样一份或几份的数”。
分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。 2.应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
3.书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。
如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小。
5.小学数学知识点总结
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 ) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整。
6.生活中的趣味数学知识
1.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?
2、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?
3.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?
1
设x名工人生产上衣,得
4x=7*(66-x)
则x=42
所以一天可以生产 4*42=168 套服装
2
设其有x张邮票.得
x/5+N/8+39=x
化简得 4x/5-N/8=39
由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)*8 得4x/5-(2t+1)=39
x=(100+5t)/2
则5t为偶数,再设t=2w,得x=(100+5*2w)/2=50+5w
由此可知,共有50+5w 张邮票, w为0,1,2,3,4,。
此时N=32w+8
3
设有x次考试的成绩,现在的平均分为a.则有
(xa+100)/(x+1)=91
(xa+80)/(x+1)=86
两式相减得20/(x+1)=5
则x=3 a=88
即 现有3次考试的成绩
7.数学问答
1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 、正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒。
8.数学计算题大全:要答案
0.26 + 0.35 = 0.61 0.33 + 0.45 = 0.78 0.4 + 0.55 = 0.95 0.47 + 0.65 = 1.12 0.54 + 0.75 = 1.29 0.61 + 0.85 = 1.46 0.68 + 0.95 = 1.63 0.75 + 1.05 = 1.8 0.82 + 1.15 = 1.97 0.89 + 1.25 = 2.14 0.96 + 1.35 = 2.31 1.03 + 1.45 = 2.48 1.1 + 1.55 = 2.65 1.17 + 1.65 = 2.82 1.24 + 1.75 = 2.99 1.31 + 1.85 = 3.16 1.38 + 1.95 = 3.33 1.45 + 2.05 = 3.5 1.52 + 2.15 = 3.67 1.59 + 2.25 = 3.84 1.66 + 2.35 = 4.01 1.73 + 2.45 = 4.18 1.8 + 2.55 = 4.35 1.87 + 2.65 = 4.52 1.94 + 2.75 = 4.69 2.01 + 2.85 = 4.86 2.33 * 1.5 = 3.495 2.4 * 2 = 4.8 2.47 * 2.5 = 6.175 2.54 * 3 = 7.62 2.61 * 3.5 = 9.135 2.68 * 4 = 10.72 2.75 * 4.5 = 12.375 2.82 * 5 = 14.1 2.89 * 5.5 = 15.895 2.96 * 6 = 17.76 3.03 * 6.5 = 19.695 3.1 * 7 = 21.7 3.17 * 7.5 = 23.775 3.24 * 8 = 25.92 3.31 * 8.5 = 28.135 3.38 * 9 = 30.42 3.45 * 9.5 = 32.775 3.52 * 10 = 35.2 3.59 * 10.5 = 37.695 3.66 * 11 = 40.26 3.73 * 11.5 = 42.895 3.8 * 12 = 45.6 3.87 * 12.5 = 48.375 3.94 * 13 = 51.22 3.25 - 2.15 = 1.1 4.02 - 2.75 = 1.27 4.79 - 3.35 = 1.44 5.56 - 3.95 = 1.61 6.33 - 4.55 = 1.78 7.1 - 5.15 = 1.95 7.87 - 5.75 = 2.12 8.64 - 6.35 = 2.29 9.41 - 6.95 = 2.46 10.18 - 7.55 = 2.63 10.95 - 8.15 = 2.8 11.72 - 8.75 = 2.97 12.49 - 9.35 = 3.14 13.26 - 9.95 = 3.31 14.03 - 10.55 = 3.48 14.8 - 11.15 = 3.65 15.57 - 11.75 = 3.82 16.34 - 12.35 = 3.99 17.11 - 12.95 = 4.16 17.88 - 13.55 = 4.33 18.65 - 14.15 = 4.5 19.42 - 14.75 = 4.67 20.19 - 15.35 = 4.84 20.96 - 15.95 = 5.01 21.73 - 16.55 = 5.18 22.5 - 17.15 = 5.35 2.5 ÷ 0.5 = 5.00 3 ÷ 1 = 3.00 3.5 ÷ 1.5 = 2.33 4 ÷ 2 = 2.00 4.5 ÷ 2.5 = 1.80 5 ÷ 3 = 1.67 5.5 ÷ 3.5 = 1.57 6 ÷ 4 = 1.50 6.5 ÷ 4.5 = 1.44 7 ÷ 5 = 1.40 7.5 ÷ 5.5 = 1.36 8 ÷ 6 = 1.33 8.5 ÷ 6.5 = 1.31 9 ÷ 7 = 1.29 9.5 ÷ 7.5 = 1.27 10 ÷ 8 = 1.25 10.5 ÷ 8.5 = 1.24 11 ÷ 9 = 1.22 11.5 ÷ 9.5 = 1.21 12 ÷ 10 = 1.20 12.5 ÷ 10.5 = 1.19 13 ÷ 11 = 1.18 13.5 ÷ 11.5 = 1.17 14 ÷ 12 = 1.17。
9.初一数学知识点总结
原发布者:智拓法律
初一数学知识点第一章有理数1正数、负数、有理数、相反数、科学记数法、近似数2数轴:用数轴来表示数3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小。5有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;互为相反数的两数相加为零;一个数加上零,仍得这个数。6有理数的减法(把减法转换为加法)减去一个数,等于加上这个数的相反数。7有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零。乘积是一的两个数互为倒数。8有理数的除法(转换为乘法)除以一个不为零的数,等于乘这个数的倒数。9有理数的乘方正数的任何次幂都是正数;零的任何次幂都是负数;负数的奇次幂是负数,负数的偶次幂是正数。10混合运算顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。第二章整式的加减补角和余角:等角的补角和余角相等4一元一次不等式组及其解法:大大取大;小小取小;大于大的,小于小的取两边,大于小的,小于大的去中间。
10.小学数学知识整理
小学一年级 九九乘法口诀表。
学会基础加减乘。小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式 一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面1、单价*数量=总价2、单产量*数量=总产量3、速度*时间=路程4、工效*时间=工作总量5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。10、解比例:。