不同进制的小知识

2022-09-23 综合 86阅读 投稿:藏于心

1.进制的由来和关于二进制的知识

比如我们最常用的10进制,其实起源于人有10个指头。

如果我们的祖先始终没有摆脱手脚不分的境况,我想我们现在一定是在使用20进制。至于二进制……没有袜子称为0只袜子,有一只袜子称为1只袜子,但若有两袜子,则我们常说的是:1双袜子。

生活中还有:七进制,比如星期。十六进制,比如小时或“一打”,六十进制,比如分钟或角度……了解一些进制知识!一)、数制计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。

一般计数都采用进位计数,其特点是:(1)逢N进一,N是每种进位计数制表示一位数所需要的符号数目为基数。(2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。

在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和18 4 2 1二)、数制转换不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。

有四进制十进制:有10个基数:0 ~~ 9 ,逢十进一二进制:有2 个基数:0 ~~ 1 ,逢二进一八进制:有8个基数:0 ~~ 7 ,逢八进一十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一1、数的进位记数法N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p02、十进制数与P进制数之间的转换①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。例如,将(30)10转换成二进制数。

将(30)10转换成二进制数2| 30 ….0 ----最右位2 15 ….12 7 ….12 3 ….11 ….1 ----最左位∴ (30)10=(11110)2将(30)10转换成八、十六进制数8| 30 ……6 ------最右位3 ------最左位∴ (30)10 =(36)8 16| 30 …14(E)----最右位1 ----最左位∴ (30)10 =(1E)163、将P进制数转换为十进制数把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。把二进制11110转换为十进制(11110)2=1*24+1*23+1*22+1*21+0*20==16+8+4+2+0=(30)10把一个八进制转换成十进制采用方法:把这个八进制的最后一位乘上80,倒数第二位乘上81,……,一直到最高位乘上8n,然后将各项乘积相加的结果就它的十进制表达式。

把八进制36转换为十进制(36)8=3*81+6*80=24+6=(30)10把一个十六进制转换成十进制采用方法:把这个十六进制的最后一位乘上160,倒数第二位乘上161,……,一直到最高位乘上16n,然后将各项乘积相加的结果就它的十进制表达式。把十六制1E转换为十进制(1E)16=1*161+14*160=16+14=(30)103、二进制转换成八进制数(1)二进制数转换成八进制数:对于整数,从低位到高位将二进制数的每三位分为一组,若不够三位时,在高位左面添0,补足三位,然后将每三位二进制数用一位八进制数替换,小数部分从小数点开始,自左向右每三位一组进行转换即可完成。

例如:将二进制数1101001转换成八进制数,则(001 101 001)2| | |( 1 5 1)8( 1101001)2=(151)8(2)八进制数转换成二进制数:只要将每位八进制数用三位二进制数替换,即可完成转换,例如,把八进制数(643.503)8,转换成二进制数,则(6 4 3 . 5 0 3)8| | | | | |(110 100 011 . 101 000 011)2(643.503)8=(110100011.101000011)24、二进制与十六进制之间的转换(1)二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。(2)十六进制转换成二进制数如将十六进制数转换成二进制数,只要将每一位十六进制数用四位相应的二进制数表示,即可完成转换。

例如:将(163.5B)16转换成二进制数,则( 1 6 3 . 5 B )16| | | | |(0001 0110 0011. 0101 1011 )2(163.5B)16=(101100011.01011011)2。

2.不同进制的数要怎样比较大小

不同进制的数可将其全部转化为同一进制的数值来进行大小的比较。

转化过程可使用电脑上的计算器来进行转化。具体操作步骤如下:1、在此举例将十六进制转化为十进制,先在电脑上打开计算器,然后在此软件的页面上点击左上角的三条横线,然后就会弹出来一个选项框,在此框内点击计算器栏目下的“程序员”选项。

2、然后就会返回计算器的页面,点击左侧的“HEX”(HEX是十六进制,DEC是十进制,OCT是八进制,BIN是二进制),接着输入要进行转换操作的十六进制数值。3、接着点击左侧的“DEC”(也就是十进制),然后就可以转换完成了。

3.电脑常识:进制的定义是

不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。

有四进制

十进制:有10个基数:0 ~~ 9 ,逢十进一

二进制:有2 个基数:0 ~~ 1 ,逢二进一

八进制:有8个基数:0 ~~ 7 ,逢八进一

十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一

4.各种进制转换怎么搞

2、8、10、16进制转换方法 电脑DIY知识 2008-06-12 17:45 阅读4312 评论24 字号: 大 中 小小 这是一节“前不着村后不着店”的课。

不同进制之间的转换纯粹是数学上的计算。不过,你不必担心会有么复杂,无非是乘或除的计算。

生活中其实很多地方的计数方法都多少有点不同进制的影子。 比如我们最常用的10进制,其实起源于人有10个指头。

如果我们的祖先始终没有摆脱手脚不分的境况,我想我们现在一定是在使用20进制。 至于二进制……没有袜子称为0只袜子,有一只袜子称为1只袜子,但若有两袜子,则我们常说的是:1双袜子。

生活中还有:七进制,比如星期。十六进制,比如小时或“一打”,六十进制,比如分钟或角度…… 我们找到问号字符(?)的ASCII值是63,那么我们可以把它转换为八进值:77,然后用 '/77'来表示'?'。

由于是八进制,所以本应写成 '/077',但因为C,C++规定不允许使用斜杠加10进制数来表示字符,所以这里的0可以不写。 事实上我们很少在实际编程中非要用转义符加八进制数来表示一个字符,所以,6.2.4小节的内容,大家仅仅了解就行。

6.2.5 十六进制数转换成十进制数 2进制,用两个阿拉伯数字:0、1; 8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7; 10进制,用十个阿拉伯数字:0到9; 16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊? 16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方…… 所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。 假设有一个十六进数 2AF5, 那么如何换算成10进制呢? 用竖式计算: 2AF5换算成10进制: 第0位: 5 * 16^0 = 5 第1位: F * 16^1 = 240 第2位: A * 16^2 = 2560 第3位: 2 * 16^3 = 8192 + ------------------------------------- 10997 直接计算就是: 5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997 (别忘了,在上面的计算中,A表示10,而F表示15) 现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

假设有人问你,十进数 1234 为什么是 一千二百三十四?你尽可以给他这么一个算式: 1234 = 1 * 10^3 + 2 * 10^2 + 3 * 10^1 + 4 * 10^0 6.2.6 十六进制数的表达方法 如果不使用特殊的书写形式,16进制数也会和10进制相混。随便一个数:9876,就看不出它是16进制或10进制。

C,C++规定,16进制数必须以 0x开头。比如 0x1表示一个16进制数。

而1则表示一个十进制。另外如:0xff,0xFF,0X102A,等等。

其中的x也也不区分大小写。(注意:0x中的0是数字0,而不是字母O) 以下是一些用法示例: int a = 0x100F; int b = 0x70 + a; 至此,我们学完了所有进制:10进制,8进制,16进制数的表达方式。

最后一点很重要,C/C++中,10进制数有正负之分,比如12表示正12,而-12表示负12,;但8进制和16进制只能用达无符号的正整数,如果你在代码中里:-078,或者写:-0xF2,C,C++并不把它当成一个负数。 6.2.7 十六进制数在转义符中的使用 转义符也可以接一个16进制数来表示一个字符。

如在6.2.4小节中说的 '?' 字符,可以有以下表达方式: '?' //直接输入字符 '/77' //用八进制,此时可以省略开头的0 '/0x3F' //用十六进制 同样,这一小节只用于了解。除了空字符用八进制数 '/0' 表示以外,我们很少用后两种方法表示一个字符。

6.3 十进制数转换到二、八、十六进制数 6.3.1 10进制数转换为2进制数 给你一个十进制,比如:6,如果将它转换成二进制数呢? 10进制数转换成二进制数,这是一个连续除2的过程: 把要转换的数,除以2,得到商和余数, 将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。

听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。

“把要转换的数,除以2,得到商和余数”。 那么: 要转换的数是6, 6 ÷ 2,得到商是3,余数是0。

(不要告诉我你不会计算6÷3!) “将商继续除以2,直到商为0……” 现在商是3,还不是0,所以继续除以2。 那就: 3 ÷ 2, 得到商是1,余数是1。

“将商继续除以2,直到商为0……” 现在商是1,还不是0,所以继续除以2。 那就: 1 ÷ 2, 得到商是0,余数是1 (拿笔纸算一下,1÷2是不是商0余1!) “将商继续除以2,直到商为0……最后将所有余数倒序排列” 好极!现在商已经是0。

我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了! 6转换成二进制,结果是110。 把上面的一段改成用表格来表示,则为:。

5.有关十进制,二进制,十六进制等数学知识

一)、数制 计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。

一般计数都采用进位计数,其特点是: (1)逢N进一,N是每种进位计数制表示一位数所需要的符号数目为基数。 (2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。

在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和1 8 4 2 1 二)、数制转换 不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。

有四进制 十进制:有10个基数:0 ~~ 9 ,逢十进一 二进制:有2 个基数:0 ~~ 1 ,逢二进一 八进制:有8个基数:0 ~~ 7 ,逢八进一 十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一 1、数的进位记数法 N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p0 2、十进制数与P进制数之间的转换 ①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。例如,将(30)10转换成二进制数。

将(30)10转换成二进制数 2| 30 ….0 ----最右位 2 15 ….1 2 7 ….1 2 3 ….1 1 ….1 ----最左位 ∴ (30)10=(11110)2 将(30)10转换成八、十六进制数 8| 30 ……6 ------最右位 3 ------最左位 ∴ (30)10 =(36)8 16| 30 …14(E)----最右位 1 ----最左位 ∴ (30)10 =(1E)16 3、将P进制数转换为十进制数 把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。 把二进制11110转换为十进制 (11110)2=1*24+1*23+1*22+1*21+0*20= =16+8+4+2+0 =(30)10 把一个八进制转换成十进制采用方法:把这个八进制的最后一位乘上80,倒数第二位乘上81,……,一直到最高位乘上8n,然后将各项乘积相加的结果就它的十进制表达式。

把八进制36转换为十进制 (36)8=3*81+6*80=24+6=(30)10 把一个十六进制转换成十进制采用方法:把这个十六进制的最后一位乘上160,倒数第二位乘上161,……,一直到最高位乘上16n,然后将各项乘积相加的结果就它的十进制表达式。 把十六制1E转换为十进制 (1E)16=1*161+14*160=16+14=(30)10 3、二进制转换成八进制数 (1)二进制数转换成八进制数:对于整数,从低位到高位将二进制数的每三位分为一组,若不够三位时,在高位左面添0,补足三位,然后将每三位二进制数用一位八进制数替换,小数部分从小数点开始,自左向右每三位一组进行转换即可完成。

例如: 将二进制数1101001转换成八进制数,则 (001 101 001)2 | | | ( 1 5 1)8 ( 1101001)2=(151)8 (2)八进制数转换成二进制数:只要将每位八进制数用三位二进制数替换,即可完成转换,例如,把八进制数(643.503)8,转换成二进制数,则 (6 4 3 . 5 0 3)8 | | | | | | (110 100 011 . 101 000 011)2 (643.503)8=(110100011.101000011)2 4、二进制与十六进制之间的转换 (1)二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。 (2)十六进制转换成二进制数 如将十六进制数转换成二进制数,只要将每一位十六进制数用四位相应的二进制数表示,即可完成转换。

例如:将(163.5B)16转换成二进制数,则 ( 1 6 3 . 5 B )16 | | | | | (0001 0110 0011. 0101 1011 )2 (163.5B)16=(101100011.01011011)2。

不同进制的小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除