1.数学小知识手抄报内容 一两百字
可以写一些数学家的故事、应用题小常识
■简历:
1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。
■主要成果:
1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。
陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作。
陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。
■巨星的陨落 :
1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。
1996年3月19日,著名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。
这是数学家陈景润的,你可以选其中一段
2.数学手抄报资料
中国数学界的伯乐——熊庆来 人们在赞美千里马时,总会记起识马的伯乐。
中国科学界在赞美华罗庚时,也不会忘记他的老师、中国近代数学的先驱——熊庆来。 熊庆来(1893—1969),字迪之,云南弥勒人,18岁考入云南省高等学堂,20岁赴比利时学采矿,后到法国留学,并获博士学位。
他主要从事函数论方面的研究,定义了一个“无穷级函数”,国际上称为熊氏无穷数。 熊庆来热爱教育事业,为培养中国的科学人才,做出了卓越的贡献。
1930年,他在清华大学当数学系主任时,从学术杂志上发现了华罗庚的名字,了解到华罗庚的自学经历和数学才华以后,毅然打破常规,请只有初中文化程度的19岁的华罗庚到清华大学。在熊庆来的培养下,华罗庚后来成为著名的数学家。
我国许多著名的科学家都是他的学生。在70多岁高龄时,他虽已半身不遂,还抱病指导两个研究生,这就是青年数学家杨乐和张广厚。
熊庆来爱惜和培养人才的高尚品格,深受人们的赞扬和敬佩。早在1921年,他在东南大学(南京大学前身)当教授时,发现一个叫刘光的学生很有才华,经常指点他读书、研究。
后来又和一位教过刘光的教授,共同资助家境贫寒的刘光出国深造,并且按时给他寄生活费。有一次,熊庆来甚至卖掉自己身上穿的皮袍子,给刘光寄钱。
刘光成为著名的物理学家后,经常满怀深情地提起这段往事,他说:“教授为我卖皮袍子的事,十年之后才听到,当时,我感动得热泪盈眶。这件事对我是刻骨铭心的,永生不能忘怀。
他对我们这一代多么关心,付了多么巨大的热情和挚爱呀!” 数学之父—塞乐斯 (Thales) 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。
他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。
在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。
如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。
塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。
它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。
塞乐斯最先证明了如下的定理: 1.圆被任一直径二等分。 2.等腰三角形的两底角相等。
3.两条直线相交,对顶角相等。 4.半圆的内接三角形,一定是直角三角形。
5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。
相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。
数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。 塞乐斯的墓碑上列有这样一段题辞:"这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。
" 【成语】:朝三暮四 【故事】: 据说,这是记载在“庄子”里面的一则寓言故事。宋朝有一个人在他家养了一大批的猴子,大家都叫他狙公。
狙公懂得猴子的心理,猴子也了解他的话,因此,他更加的疼爱这些能通人语的小动物,经常缩减家中的口粮,来满足猴子的食欲。有一年,村子里闹了饥荒,狙公不得不缩减猴子的食粮,但他怕猴子们不高兴,就先和猴子们商量,他说:“从明天开始,我每天早上给你们三颗果子,晚上再给你们四颗,好吗?”猴子们听说他们的食粮减少,都咧嘴露牙的站了起来,表现出非常生气的样子。
狙公看了,马上就改口。
3.数学手抄报资料
最佳答案检举 你可以找一些数字歌和一些关于奥数相关的资料,再进行加工一下就有你所要的东西了!你参考一下以下内容吧:我曾经做的手抄报,左边写哥德巴赫猜想的2+1研究过程,右边写一个数学小故事,至于装饰嘛~写点空心数字,拿蜡笔涂上颜色,最好做出朦胧的效果.这两个网站有一些数学手抄报的图片数学手抄报:写些经典例题外加些数学家的故事例如数学家高斯的故事高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。
他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。
七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。
同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。
经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。1788年高斯不顾父亲的反对进了高等学校。
数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。
隔年,高斯进入Braunschweig学院。这年,高斯十五岁。
在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。
最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经知道如何用尺规作出正 2m*3n*5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。
但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:1、n = 2k,k = 2, 3,…2、n = 2k * (几个不同「费马质数」的乘积),k = 0,1,2,…费马质数是形如 Fk = 22k 的质数。
像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。
「二次互逆定理」也在其中。二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。
它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。
必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。
高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。
他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。
这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square。
4.4年级数学手抄报资料
数学名人:数学家高斯小时候的故事 从一加到一百 高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。
高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。
」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。
重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。
七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。
这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。
考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。
最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50*101=5050。
由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 数学家高斯的故事 高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。
他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。
七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。
同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。
经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。
数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 数学家华罗庚小时候的轶事 华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。
华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。
金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少? 陈景润:小时候,教授送我一颗明珠 20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。
在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。
不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。
你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。
陈景。
5.数学手抄报内容 资料
第一写关于数学的名言
罗素说:“数学是符号加逻辑”
毕达哥拉斯说:“数支配着宇宙”
哈尔莫斯说:“数学是一种别具匠心的艺术”
米斯拉说:“数学是人类的思考中最高的成就”
培根(英国哲学家)说:“数学是打开科学大门的钥匙”
布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”
黑格尔说:“数学是上帝描述自然的符号”
魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”
柏拉图说:“数学是一切知识中的最高形式”
考特说:“数学是人类智慧皇冠上最灿烂的明珠”
第二写关于数学的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
第三写关于数学的小故事
数学名人小故事-康托尔
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
最后,可以写关于数学的笑话
小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."
6.数学手抄报内容
希望以下资料对您有所帮助: 《说“0”》 记得小学一年级时,在一节数学课上,数学老师给我们出了一道特别有趣的题目:一位渔翁去钓鱼,钓了6条没头的,9条没尾的,8条半截的,共钓了多少条 鱼?当场许多同学异口同声地回答;6+9+8,共钓23条鱼。
老师摇摇头说:不对,请小朋友多想想!教室里鸦雀无声,每个人都在积极思考。好多分钟过去了,还是无人回答。
我一边深入地想,一边用手指在桌上写划,猛开心窍,立即回答:这位渔翁一条鱼也没钓着,得数是“0”。我并作出解释:“6”条没头的,就把“6”的上半部去掉,成为“0”;“9”条没尾的,就去掉“9”的下半部,成为“0”;“8”条半截的,不管你去掉“8”的上半截或下半截,还是得“0”。
所以,就是一条也没钓着——“0”。全班同学都感到新奇,哈哈大笑,老师也满意地笑了。
从此,我对“0”便产生了兴趣。从小学到中学,我对“0”的意义、作用和运用中的变化及其所表示的内容,尤为关注,从而对“0”不断地有了新的理解和新的认识。
“0”是符号。 它是数学上阿拉伯数字十个基本符号中的一个符号,其音读“零”,其形圆圈,书写占一个数字的位置,应有合适的比例。
“鸭蛋”是“0”特有的雅号,考生最忌讳这个雅号。“0”是数目。
它是一个数,是一个整数,是在整数系统中一个不可缺少的数。它既不是正数,也不是负数,是唯一的中性数,是正数与负数的分界数,它比所有的正数都小,比所有的负数都大。
“0”是不是自然数?这是个有分歧的问题。过去在数学理论上,是把“0”不作为自然数的。
在《十万个为什么•数学分册》第2页中就明文写道:“0不是自然数。”我对此有不同的看法。
我却认为:“0”是自然数。这得从什么是自然数说起,在人类历史发展的早期阶段,由于经验的积累和计数的需要,产生了用来表示物件的有无和物件个数的自然数的原始概念。
简言之,自然数是人类最早认识的数。在早期人类社会,人们认数、计数1、2、3、4、5、……,这是自然数。
既是认数、计数,首先是物体的有无,有,才可计数1、2、3、……;无,即是“0”数。应该说,“0”与1、2、3、……同是最早人们对数的原始概念,同是人类最早认识的数,同是自然数。
最新版《全日制普通高级中学教科书(试验修订本)•数学》中,确认了“0”是自然数,这是准妥的。 “0”是奇数,还是偶数?判断标准:凡能被2整除的数是偶数,不能被2整除的数是奇数。
所谓整除就是商数必须是整数,而且没有余数。因为:0+2—0,商数是整数,所以:“0”是偶数。
“0'与无穷小是否一回事?无穷小是一个不断变化的量,不断地变小,在不考虑负数情况下,无穷小就越来越接近于”0”;“0”是一个确定的数,它是一个常量。“0”可以作为无穷小的唯一的数。
“0”本身就是无穷小量,无穷小量却未必是“0”。再者,在四则运算中,“0”可以进行加、减、乘、除运算,但不能作为除数或分母;无穷小在四则运算中,可以作为除数或分母。
“0”的定义是什么?《辞海》上的一种解释:“它在任何计量单位中表示‘没有’。”《国语辞典》上是;“在算术上其意义为无,以0表之。”
数学老师也常说:“0”——表示“没有”。一减一、二减二……都等于“0”,给“0”下定义:“0”表示“没有”。
这是无疑的。 然而,“0”的意义是不是仅表示“没有”呢?“0”不仅表示“没有”,而且还表示多方面的内容及其作用,列举略述于下:温度表上的“0”度(零度),表示一个特定的温度——冰的熔点。
所谓“0”度,自然不能说是“没有”温度。人们常说的“0”时(零时),即:24时。
这是个明确的时间概念,不会说成“没有”时间。 在数轴上,“0”用一个确定的点——原点“0”表示,“0”的相反数还是“0”(-0=0),“0”的绝对值仍是“0”(|0|=0)。
在记数时,用“0”可以表示数位,如:0。02、、0。
2、20、200、2000……中的“0”,均表示数位,有相同或不相同的数位。 “0”是补空位的数目。
数的空位,必须补上“0”,如:105、、1005。……;又如 、,必补“0”的数位,如疏忽未补,其数位错,其数目必错。
“0”在四则运算中,起着特殊的作用:在加、减法中,一个数加“0”、减“0”,均仍得原数;在乘、除法中,“0”乘任何数的积为“0”,“0”除以任何非“0”数,得商为“0”。 在通用科学记数法的十进位制中,“0”担任着极其重要的“角色”。
逢十就进一位,而在该位写上“0”。“0”在十进制中,代表着:从一往上,较大单位依次是:十、百、千、万、十万、百万、千万、亿……;从一往下,较小单位依次是:分、厘、毫、丝、忽、微、……。
在当代电子计算机高科技中,“0”就是一位特别重要的新型的“代表”。它的作用就更大了。
因为电子计算机采用0与1这两个基本数码的二进位制,任何数码都由这两个基本数码组成。二进位制所需要的记数的基本符号只要两个:0与1。
可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示上凸点。 还有,长途电话号码首位的“0”,车牌号码左边的“0”,身份证号。
7.数学手抄报资料内容
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
奥数题及答案
1、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。两桶油原来各有多少油?
12/2*10=60(千克)
7+3=10
60/10*7=42(千克)
60/10*3=18(千克)
答:大桶里有42千克油,
小桶里有18千克油。
2、一桶汽油,桶的重量是油的8%,倒出48千克后,油的重量相当于同的二分之一,原有油多少千克?
48/(1-8%*0.5)
=48/96%
=50(千克)
答:原有油50千克。
*=乘号
/=除号