1.有趣的天文科学小知识有哪些
有趣的天文科学小知识有光年是距离单位、太阳的颜色、太阳系中表面温度最高的行星、太阳系中表面风速最快的行星、太阳系中度日如年的行星。
1、光年是距离单位
光年是天文大尺度距离单位,并非时间单位。鉴于光速在真空中不受惯性系和参考系限制而恒定不变的性质,人类把光速作为衡量距离的精准单位,还有一种含义,因为“光年”包含“年”这个字,而年通常是时间单位。
一光年就是光运行一年的距离,科学界把这个年定义为儒略年:365.25年;这样一光年精确的距离为:9460730472580800m,通俗来讲,一光年大概是:9.46万亿公里。目前人类最远探测器是于1977年发射的旅行者一号距离地球约216亿公里,也只有一光年的0.22%。
2、太阳的颜色
太阳真正的颜色是白色。我们之所以把太阳看成黄色,是因为地球的大气层更不容易将高波长的颜色,比如红色、橘色和黄色,散射出去。
因此,这些波长的颜色就是我们看到的,这也就是太阳呈现出黄色的原因。要是离开地球在太空中看太阳的话,就会发现太阳真正的颜色是百色(小编也没看过,不知道会不会发现眼睛已经被闪瞎)。
3、太阳系中表面温度最高的行星
太阳系中表面温度最高的行星不是距离太阳最近的水星,而是金星。水星虽然距离太阳最近,但是水星表面温度在白天可以达到427℃,而金星由于有着浓密的二氧化碳气体,导致强烈的温室效应。
其表面温度最高可以达到500℃,就算在金星夜晚也有400多℃,使得金星表面平均温度有400多℃以上。顺便说下,水星因为其夜间温度可以下降至-183℃,使得水星是太阳系中表面温差最大的行星,表面昼夜温差高达600℃。
4、太阳系中表面风速最快的行星
海王星大黑斑是出现在海王星上的暗斑,如同木星的大红斑一样。它在1989年被NASA的航海家2号太空船检测到,虽然他似乎与木星的大红斑一样,但它是个反气旋风暴,它被相信是个相对来说没有云彩的区域。
这个斑点的大小与地球近似,并且非常像木星上的大红斑。起初认为它是与大红斑一样的风暴,但更接近的观察显示它是黑暗的,并且是向海王星内部凹陷的椭圆形。
围绕在大黑斑周围的风速经测量高达每时2400公里(1500英里),是太阳系中最快的风,大黑斑被认为是海王星被甲烷覆盖时产生的一个洞孔,类似于地球上的臭氧洞。
5、太阳系中度日如年的行星
金星的公转周期是224.7个地球日,而自转周期是243个地球日,也就是说金星的一天要比一年长18个地球日,在哪里是名副其实的“度日如年”。
至于原因还没有定论,不过有一点需要注意的是,金星是太阳系中唯一一个逆向自转的大行星,自转方向是自东向西,也就是说在金星上看太阳是西升东落。
2.怎样了解更多更全面的天文知识
宇宙由星系的巨大超星系团构成,星系周围是大团看不见的空荡荡的太空。每个星系又包含了数以十亿计的恒星,构成这些恒星的物质是一些小得看不见的粒子。质子、中子和电子是最普通的粒子,它们通常以原子的形式结合在一起。质子和中子由更小的粒子构成,它叫做夸克。
四种基本力
我们的宇宙由四种力或它们之间的相互作用支配,这四种力即引力、电磁力、强核力和弱相互作用力。这些作用力是由一团粒子带来的,这团粒子叫规范玻色子,它们在构成物质的粒子之间相互交换。物理学家一直试图证明这四种力也许实际上源自于一种单一的基本力。
引力
引力是一种既能将星系结合起来,又能引起一根针下落的力。两个物体的质量越大、相互越靠近,它们之间的吸引力就越强。许多科学家认为,引力是由一种叫做重力子的粒子携带的,但至今没有人在任何实验中找到它们。
电磁力
电磁力作用于所有带电荷的粒子之间,比如电子。作用于固体原子和分子之间的电磁力使固体具有硬度,这种力也具有磁性和发光的特性。携带电磁力的粒子叫光子,它也是产生光线的粒子。
强核力
强核力存在于一个原子的原子核(核)内,它把原子内的中子和带正电荷的质子结合在一起(质子经常试图互相推开,如果没有强核力,它们将相互飞开)。载有强核力的粒子叫做胶子。
弱相互作用
弱相互作用引起放射性衰变(原子的原子核破裂),称为贝塔衰变。放射性的原子不稳定,是因为它的原子核容纳了太多的中子,当贝塔衰变发生时,一个中子变成一个质子,释放出电子(这种情况下称为β粒子)。弱相互作用是由W粒子和Z粒子传递的。
普适规则
许多年来,物理学家们试图用单一的科学定理来解释宇宙的运动,他们现在正向着“普适规则”方向进行研究。“普适规则”认为所有力中引力、电磁力、强核力、弱相互作用力都是相互关联的,并且指出所有亚原子微粒可能都是由一种基本粒子产生的。
物理变星可分为许多类型,其中大多数为脉动变星,爆发变星。
爆发变星是一种亮度突然激烈增强的变星。造成这类变星光度变化的原因是星体本身的爆发。
爆发前,星体处于相对稳定(或缓慢变化)的状态,一旦爆发,星体的亮度可以迅速增加到原来的几千或几亿倍,有的甚至在白天都可见到.经过一段时期又逐渐暗弱下来.一部分爆发变星,有人又称之为灾变变星。爆发变星爆发的规模又大有小,亮度的变化也有大有小,有的星爆发还不止一次。爆发变星可以包括许多类型,例如,新星、超新星、再发新星、矮新星、类新星、耀星等。
耀星 是指几秒到几十秒内亮度突然增亮,经过十几分钟或几十分钟后慢慢复原的一类特殊的变星。它们的亮度在平时基本上不变,亮度增大时有的可增加到百倍以上。但这样的亮度只能维持十几到几十分钟,看起来好象是一次闪耀,所以取名耀星。
1924年发现船底座DH星有这样的现象。1924年发现鲸鱼座UV星亮度在三分钟内增强11倍。观测最多的是太阳附近的耀星。半人马座比邻星就是一颗耀星。星团星协中也发现了耀星,昴星团最多,460多颗;猎户座大星云区次之,300多颗。绝大多数的耀星是极小又冷的红矮星,光度很低,耀亮的时间又短,因此,只有离太阳较近的耀星才能被我们认出来。不过,耀星的实际数目很多。如果用一架大型望远镜观测,平均每90分钟就可见到一次耀亮,据估计,银河系的恒星中,约80%—90%可归入耀亮的范畴。耀星表面存在局部活动区,耀亮就发生在这些区域,并且在同一区域可发生多次,这一点与太阳耀斑活动相似,但耀亮时辐射能量要比太阳耀斑的能量大 100--1000倍.
已经写不下了,好了。
3.请说出几条天文小知识
▲.什么是宇宙?
答:宇宙是天地万物的总称,它既没有边际,也没有尽头,同时也没有开始和终结。
▲.银河系有多大?
答:许许多多的恒星合在一起,组成一个巨大的星系,其中太阳系所在的星系叫银河系。银河系像一只大铁饼,宽约8万光年,中心厚约1.2万光年,恒星的总数在1000颗以上。
▲.为什么白天看不见星星?
答:因为白天部分阳光被大气中的气体和尘埃散射,把天空照得十分明亮,再加上太阳辐射的光线非常强烈,使我们看不出星星来了。
▲.太阳系里有哪些天体?
答:太阳系中有9大行星。它们依次是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。另外,太阳系里还有许多小行星,彗星和流星,已正式编号的小行星有2958颗。最著名的彗星是哈雷彗星。
▲.为什么星星有不同的颜色?
答:星星的颜色决定于它的温度。不同的颜色代表着不同的表面温度:发蓝的星星表面温度高,发红的星星表面温度低。
▲.最亮的星是什么星?
答:天空中最亮的星是大犬座里的天狼星,星等为1.46等。距地球8.7光年。
▲.怎样找北极星?
答:在天空中很容易找到北极星:先找到大熊星,再找到北斗七星。从勺头边上的那两颗指极星引出一条直线,它延长过去正好通过北极星。北极星到勺头的距离,正好是两颗指极星间距离的5倍。也可以通过“仙后座”找北极星。
▲.蓝天有多高?
答:“蓝天”其实是地球的大气层。大气层是包围着地球的空气,根据空气密度的不同分为5层,总共有2000-3000公里厚。但绝大部分空气都集中在从地面到15公里高以下的地方,越往高处空气越稀薄。大气层有多厚,蓝天就应该有多高。
▲.为什么天空是蓝色的?
答:当太阳光照射到地球的大气层时,蓝色光最容易从其他颜色中分离出来,扩散到空气中再反射出来。而其他颜色的光穿透能力很强,透过大气层照到地球上,于是我们看天空只能见到日光中的蓝色光。
4.基本的天文知识
1、银河系
银河系(Milky Way Galaxy,别名银汉、天河、银河、星河、天汉等),是太阳系所在的棒旋星系,包括1000~4000亿颗恒星和大量的星团、星云以及各种类型的星际气体和星际尘埃,从地球看银河系呈环绕天空的银白色的环带。
总质量约为太阳的2100亿倍,隶属于本星系群,最近的河外星系是距离银河系4万2千光年的大犬座矮星系。
2、太阳系
太阳系,是以太阳为中心,和所有受到太阳的引力约束天体的集合体。包括八大行星(由离太阳从近到远的顺序:水星、金星、地球、火星、木星、土星、天王星、海王星 )、以及至少173颗已知的卫星、5颗已经辨认出来的矮行星和数以亿计的太阳系小天体。
3、宇宙
广义的宇宙定义是万物的总称,是时间和空间的统一。狭义的宇宙定义是地球大气层以外的空间和物质。“宇宙航行”的“宇宙”定义就是狭义的“宇宙”的定义,宇宙航行意思就是在大气层以外的空间航行。
4、黑洞
黑洞是现代广义相对论中,宇宙空间内存在的一种天体。黑洞的引力很大,使得视界内的逃逸速度大于光速。
黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因高热而放出和γ射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹取得位置以及质量。
5、地月系
地球与月球构成了一个天体系统,称为地月系。在地月系中,地球是中心天体,因此一般把地月系的运动描述为月球对于地球的绕转运动。
然而,地月系的实际运动,是地球与月球对于它们的公共质心的绕转运动。地球与月球绕它们的公共质心旋转一周的时间为27天7小时43分11.6秒,也就是27.32166天,公共质心的位置在离地心约4671公里的地球体内。
5.天文小知识
1.猎户座是冬季的典型星座。
2.全天共88个星座。
3.描述地球自转现象。
4.差三分钟多。
5.古代把北极周围的天空分为紫微垣,太微垣和天市垣三个区域。
6.二十八星宿是古人为观测日、月、五星运行而划分的二十八个星区,用来说明日、月、五星运行所到的位置。每宿包含若干颗恒星。所以宿指的是古人划分的天上的星区。
7.赤道地区四季昼夜等长。
8.北极极昼时,南极是极夜。
9.日晷测量时间的仪器。
10.北京地区正午太阳高度最大是在每年的夏至节气。
6.谁有关于天文学方面的小知识
天文知识1001条,下载地址: (一)宇宙的起源宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。
宇宙是物质世界,它处于不断的运动和发展中。 《淮南子·原道训》 注:“四方上下曰宇,古往今来曰宙,以喻天地。”
即宇宙是天地万物的总称。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。
直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。
大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。
注释:大爆炸理论 (big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。
它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。
这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。
物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。
但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。
温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。
当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实: (1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。
各种天体年龄的测量证明了这一点。 (2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。
如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。 (3)在各种不同天体上,氦丰度相当大,而且大都是30%。
用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。
(4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。
1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。(二)行星状星云 发射星云的一种。
在望远镜中大都具有象天王星或海王星那样的略带绿色而有明亮边缘的小圆面,因此赫歇尔在1779年发现这类天体后称它们为行星状星云。 用大望远镜观察显示出行星状星云有纤维、斑点、气流和小弧等复杂结构。
它们主要分布在银道面附近,受到星际消光的影响,大量的行星状星云被暗星云遮蔽而难以观测,根据太阳附近的分布密度(约每千立方秒差距三十到五十个)估计,整个银河系中应该有四五万个,现在观测到的只是其中很小的一部分。 行星状星云的质量在十分之一到一个太阳质量之间,星云中的密度在每立方厘米 100-10,000个原子(离子)之间。
行星状星云的中心星都是温度很高的(大于等于30000K),星云吸收它发出的强紫外辐射通过级联跃迁过程转化为可见光。行星状星云象征着一颗恒星到了晚年,估计行星状星云的寿命平均为三万年左右,星云气体逐渐扩散消失于星际空间,仅留下一个中央白矮星。
(三)云雾状星云 气体星云主要由高温气体组成。 组成星云的物质受附近的恒星发出的紫外线影响而带有电荷,并在它们降压的过程中放出射线(在很大程度上类似于霓虹灯)。
这类星云通常都是红色的,因为它们的主要成份氢在此情况下呈红色(其他物质呈不同的颜色,但氢的含量远高于其他物质)。气体星云通常会孕育新的恒星。
尘埃星云是由尘埃组成的星云,它仅仅靠反射附近恒星发出的光而能被看到,所以也叫反射星云。尘埃星云也常常成为恒星诞生的场所。
它们看上去常呈蓝色,因为它们反射的蓝光较多。尘埃星云和气体星云一般都会呆在一起,有时它们一起被称作云雾状星云。
(四)暗星云 暗星云是银河系中不发光的弥漫物质所形成的云雾状天体。和亮星云一样,他们的大小和形状是多种多样的。
小的只有太阳质量的百分之几到千分之几,是出现在一些亮星云背景上的球状体;大的有几十到几百个太阳的质量,有的甚至更大。它们内部的物质密度也。
7.小学生必须知道的天文知识有哪些
1、八大行星
水金地火木土星,天王海王绕外边;
唯有地球生物现,温气液水是由缘①。
(①:温指的是适宜的温度;气指的是适宜生物呼吸的大气;液水指的是液态水)
2、地球特点
赤道略略鼓,两极稍稍扁。自西向东转,时间始变迁。
南北为经线,相对成等圈。东西为纬线,独成平行圈;
赤道为最长,两极化为点。
3、东西南北半球的划分
西经二十度,东经一百六,一刀切下去,东西两半球。
南北半球分,赤道零纬度, (四季温带显,南北相反出)。
4、昼夜交替和四季变化
地球自转,昼夜更换。绕日公转,四季出现。
自转一日,公转一年。自西向东,方向不变。
5、地球五带
地球有五带,全靠四线分;回归间热带,极圈分寒温;
寒温各有二,五带温不均①。①温,指温度。
6、地图辨方向
地图方向辨,摆正放眼前;上北下为南,左西右东边。
标图易分辨,经纬网较难;o纬线指南北,东西经线圈。
极地投影图,定向较特殊:对于北半球,心北四周南;
北纬圈东西,自转反时走。对于南半球,心南北四周;
南纬圈东西,自转顺时走。
7、大洲和大洋
地球表面积,总共五亿一;水陆百分比,海洋占七一。
陆地六大块,含岛分七洲;亚非南北美,南极大洋欧。
水域四大洋,太平最深广;大西“S”样,印度北冰洋。
板块构造学,六块来拼合;块内较稳定,交界地震多。
8、大洋和大洲的位置
洋以洲为界,洲以洋分野。太平洋为四洋首,位于亚澳两美间。
大西洋西南北美,东岸临界欧与非。印度洋临亚非澳,南部三洋水相连。
北冰洋面为最小,亚欧北美三洲环。
9、七大洲分界和位置
地表十分陆占三,亚欧非洋两美南①。亚欧两洲本一体,乌拉高加分两边②;
亚非原本相结连,苏伊运河来割断③;亚洲北美隔水望,白令海峡在中间;
中美南北来牵线,巴拿运河又阻拦④;数大洋洲面积小,似断不断亚下边。
亚欧非洋东半球,南北美占西半边,唯有南极搞独立,冰层覆盖称高原。
①洋,大洋洲。两美,南美洲和北美洲。南,南极洲。②乌拉,乌拉尔山脉和乌拉尔河。高加,高加索山脉。③苏伊运河,苏伊士运河。 ④巴拿运河,巴拿马运河。
10、七大洲地形
(1)亚洲
亚洲地形杂,中高四周洼。冲积平原广,山地高原大。 -江河放射流,水资源可夸。
(2)欧洲
半岛缘海多,形体分节肢;山地居南北,中部平原低;
地形平原主,海拔倒第一。
(3)北美洲
东部高原联山地,西部山地接高原。东西相间高大陆,世称湖海在其间。
(4)南美洲
安第斯山雄踞西,东部平原高原区。地形多为世界最,高原平原列首位。
西部山脉为最长,亚马逊河流域广。热带雨林居世首,草原要数潘帕斯。
(5)非洲
平均海拔六百米,号称大陆高原洲,东部高原连一体,西部沙漠平原有。
(6)大洋洲
面积小,分两区,一大陆,二岛屿。大陆东西高,中部是盆地。
(7)南极洲
四周环三洋,多年冰雪积;超过二千米,海拔数第一。
8.天文小知识
天文知识
黑洞
有的天体的质量十分巨大,因而引力极强,没有任何东西能从该处逃逸,甚至光线也不例外。没有光线返回,眼睛无法看到物体,所以称之为“黑洞”。
黄道
地球上的人看太阳于一年内在恒星之间所走的视路径,即地球的公转轨道平面和天球相交的大圆黄道和天赤道成23度26分的角,相交于春分点和秋分点。
黄极
天球上与黄道角距离都是90度的两点,靠近北天极的叫“北黄极”。黄极与天极的角距离等于黄赤交角。北黄极在天龙座 与 两星联线的中央。
黄道带
天球上黄道两边各8度(共宽16度)的一条带。日、月和主要行星的运 行路径都处在黄道带内。古人为了表示太阳在黄道上的位置。把黄道分为十二段,叫“黄道十二宫”。从春分起依次为白羊、金牛、双子、巨蟹、狮子、室女、天秤、天蝎、人马、摩羯、宝瓶和双鱼。过去的黄道十二宫和黄道十二星座一致。由于春分点向西移动,两千年前在白羊座中的春分点已移至双鱼座,命名与星座已不吻合。
三垣
包括紫微垣、太微垣、天市垣。紫微垣包括北天极附近的天区,大体相当于拱极星区;太微垣包括室女、后发、狮子等星座的一部分;天市垣包括蛇夫、武仙、巨蛇、天鹰等星座的一部分。
二十八宿
二十八宿分:东方七宿,西方七宿,南方七宿,北方七宿。二十八宿又称为二十八星或二十八舍。最初是古人为比较日、月、金、木、水、火、土的运动而选择的二十八个星官,作为观测时的标记。“宿”的意思和黄道十二宫的“宫”类似,表示日月五星所在的位置。到了唐代,二十八宿成为二十八个天区的主体,这些天区仍以二十八宿的名称为名称,和三垣的情况不同,作为天区,二十八宿主要是为了区划星官的归属。二十八宿从角宿开始,自西向东排列,与日、月视运动的方向相同。
东方七宿
角、亢、氐、房、心、尾、萁;北方七宿:斗、牛(牵牛)、女(须女)、虚、危、室(营室)、壁(东壁)
西方七宿
奎、娄、胃、昴、毕、觜、参
南方七宿
井(东井)、鬼(舆鬼)、柳、星(七星)、张、翼、轸。
北方七宿
斗、牛、女、虚、危、室、壁
辅官或辅座
此外还有贴近这些星官与它们关系密切的一些星官,如坟墓、离宫、附耳、伐、钺、积尸、右辖、左辖、长沙、神宫等,分别附属于房、危、室、毕、参、井、鬼、轸、尾等宿内,称为辅官或辅座。唐代的二十八宿包括辅官或辅座 星在内总共有星183颗。
宇宙速度
是指从地面向宇宙发射人造天体必须具备的初始速度。
第一宇宙速度
人们将7.9公里/每秒的速度称为“第一宇宙速度”,又称“环绕速度”,低于这个速度,物体就会在重力的作用下返回地球。
第二宇宙速度
如果我们把速度加大,直到11.2公里/每秒,这个人造卫星就可以不受地球吸引力的影响,而到太阳系内的行星际空间旅行。人们称11.2公里/每秒的速度为“第二宇宙速度”
第三宇宙速度
如果我们还想让人造卫星飞出太阳系,到其他星球去旅行,那就必须把速度加大到16.7公里/每秒,这个速度称为“第三宇宙速度”。
平年与闰年 由于一回归年的天数不是整数,所以每年的天数是不一样的,有的是365天,有的是366天。一年的天数是366天的年份称为“闰年”,是365天的称为“平年”。“闰年”的二月比“平年”多1天,其他月份都是一样的。一般来说,能被4整除的年份是“闰年”.如果年份是整百的,则要能被400整除的才是“闰年”。
闰月 农历与公历一年所包含的天数不同,公历一年大约有365天,农历一年有354天。为了使两者的一年的天数相同,所以农历有的年份要加一个月,增加的这个月叫“闰月”。因为公历的一年比农历的一年只多约11天,所以不能每年都加闰月,大约19年有7个闰月。
回归年 地球绕太阳运行一周所用的时间叫回归年。一回归年为365天5小时48分46秒(合365.24219天)
9.简短一点的天文知识
“眨眼”的星星
我们的眼睛能看到的星星绝大多数是恒星。它们都和太阳一样,自己发光发热。恒星的光看上去都会一闪一闪地跳动,就像一大群调皮的孩子在眨眼睛一样。可是,你仔细观察一下那几颗容易看到的行星,就是金星、火星、木星和土星,会发现它们都很少“眨眼”,或者完全不“眨眼”。你知道这是什么缘故吗?
原来,恒星会“眨眼”是由于地球周围的大气造成的。
地球周围的大气层很厚,各个地方的疏密程度不一样,越靠近地面的地方越稠密,越到高空越稀薄。另外,大气又不是静止不动的,热空气上升,冷空气下降,总有气流在流动,这就使得各个地方大气的疏密程度时时都在变化。
光是直线传播的。但是,光从一种物质传播到另一种密度不同的物质中的时候,它的传播方向会改变,也就是光走的路线会发生偏折,这种现象叫做光的折射。你把一只筷子插到水里,就会看到筷子好像折成了两段。这就是一种折射现象。这是由于光在水和空气这两种不同密度的物质中的传播而造成的。
恒星发来的光穿过大气层的时候,由于各个不同高度的大气层密度不同,也会发生折射。同时,又由于各个地方大气的密度都在不断变化,这就使得星光偏折的方向不是一定的,而是在不断变化,一会儿左,一会儿右,一会儿前,一会儿后。这样,到达你眼睛的星光就会一会儿强,一会儿弱。你就觉得恒星的光忽明忽暗,成了一闪一闪的了。
说到这里,你可能会奇怪了,行星也和恒星一样在地球大气层外面,难道行星的光穿过大气时就不发生折射吗?行星的光当然同样会发生折射。不同的是,行星比恒星离我们近得多。恒星离得太远了,看上去都成了一个个光点。行星就不同,在我们看来是个小圆面。圆面上射来的许多条光线,经过大气折射以后到达你眼中时,这条弱了那条强,“东方不亮西方亮”,各条光线由于折射而造成的强弱变化互相抵消掉了。这样,你就觉得行星的光明暗程度没有什么变化,或者虽然有点变化也不明显。所以,我们就看到行星不怎么“眨眼”了。
星座与星名
我们祖先早就给天上的亮星起了名字,有的根据神话故事,如牛郎星、织女星、天狼星、老人星等;有的依据中国二十八宿命名,如角宿一、心宿二、娄宿三、参宿四和毕宿五等;有的根据恒星的颜色命名如大火(心宿二);还有的依据恒星所在天区命名的,如天关星、北河二、南河三、天津四、五车二和南门二等。
1603年,德国业余天文学家拜尔建议“平等对待”这些恒星,不能只给亮星起名,他提出:每个星座中的恒星从亮到暗顺序排列,以该星座名称加一个希腊字母顺序表示。例如猎户座α(参宿四)、猎户座β(参宿七)、猎户座γ(参宿五)、猎户座δ(参宿三)等。某个星座的恒星若超过了24个或者为了方便,就用星座的名称后加阿拉伯数字表示。如天鹅座61星、天鹅座32星、双子座65星及天兔座17星等。天文学家有时用星表的序号来表示星名,如猎户座α星也叫HD39801(HD星表39801号)。
人们根据一群星构成的图形加上想象,把恒星划分成许多星座。中国古代把天空划分成三垣二十八宿,“垣”是墙的意思,“宿”是住址的意思。日月穿行在黄道附近,黄道附近的星被分成28个大小不等的星区,叫28宿。月球在绕地球公转运动过程中,每日从西往东经过一宿。28宿以外的星区划分为三垣:紫微垣、太微垣和天市垣。紫微垣包括北天极附近的星区,太微垣大致包括室女座、后发座和狮子座,天室垣包括蛇夫座、武仙座、巨蛇座和天鹰座等星座。
1928年,国际天文学联合会决定,将全天划分为88个星座,其中沿黄道天区的有12个星座,因为太阳的周年视运动穿过它们,所以也叫黄道12宫。它们是双鱼座、白羊座、金牛座、双子座、巨蟹座、狮子座、室女座、天秤座、天蝎座、人马座、摩羯座和宝瓶座。
北半天球有29个星座,如小熊座、大熊座、天龙座、天琴座、天鹰座、天鹅座、武仙座、狐狸座、飞马座、蝎虎座、北冕座、猎犬座、后发座、牧夫座、仙王座、仙后座、仙女座、英仙座、猎户座等。南半天球有47个星座,入大犬座、船底座、半人马座、鲸鱼座、波江座、长蛇座、天兔座、麒麟座、蛇夫座、盾牌座、船帆座和飞鱼座等。
这88个星座形状各异,色彩纷呈,人们按照它们组合的形状把它们想象成不同的人物和动物等。并给每个星座都联想了许多美丽动听的故事。比如中国民间早就传说的牛郎星和织女星的故事。希腊故事把牛郎星和周围的星连在一起,认为像老鹰叫老鹰座,把织女星和周围的星想象为一架琴叫天琴座。天鹅座中亮的六颗星,古希腊神话故事把它说成一只在银河上空低飞的天鹅,所以叫天鹅座。
10.恒星的天文科学小知识有哪些
恒星的知识 恒星是由炽热气体组成的,是能自己发光的球状或类球状天体。
由于恒星离我们太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体。我们所处的太阳系的主星太阳就是一颗恒星。
1.1恒星演化 恒星结构恒星都是气体星球。晴朗无月的夜晚,且无光污染的地区,一般人用肉眼大约可以看到6000多颗恒星。
借助于望远镜,则可以看到几十万乃至几百万颗以上。估计银河系中的恒星大约有1500-2000亿颗。
恒星的两个重要的特征就是温度和绝对星等。大约100年前,丹麦的艾依纳尔·赫茨普龙(Einar Hertzsprung)和美国的享利·诺里斯·罗素(Henry Norris Russell )各自绘制了查找温度和亮度之间是否有关系的图,这张关系图被称为赫罗图,或者H—R图。
在H-R图中,大部分恒星构成了一个在天文学上称作主星序的对角线区域。在主星序中,恒星的绝对星等增加时,恒星的演变其表面温度也随之增加。
90%以上的恒星都属于主星序,太阳也是这些主星序中的一颗。巨星和超巨星处在H—R图的右侧较高较远的位置上。
白矮星的表面温度虽然高,但亮度不大,所以他们只处在该图的中下方。1.2恒星演化 恒星在其生命期内(发光与发热的期间)的连续变化。
生命期则依照星体大小而有所不同。单一恒星的演化并没有办法完整观察,因为这些过程可能过于缓慢以致于难以察觉。
因此天文学家利用观察许多处于不同生命阶段的恒星,并以计算机模型模拟恒星的演变。 天文学家赫茨普龙和哲学家罗素首先提出恒星分类与颜色和光度间的关系。
恒星——赫罗图系,建立了被称为“赫-罗图的”恒星演化关系,揭示了恒星演化的秘密。“赫-罗图”中,从左上方的高温和强光度区到右下的低温和弱光区是一个狭窄的恒星密集区,我们的太阳也在其中;这一序列被称为主星序,90%以上的恒星都集中于主星序内。
在主星序区之上是巨星和超巨星区;左下为白矮星区。1.3恒星形成 在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。
这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。
当物质的线度收缩了几个数量级后,情况就不同了,一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。 星坯的力学平衡是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。
这一热学上趋向平衡的自然倾向对力学起着削弱的作用。于是星坯必须缓慢的收缩,以其引力位能的降低来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。
这就是星坯演化的主要物理机制。 最新观测发现S1020549恒星下面我们利用经典引力理论大致的讨论这一过程。
考虑密度为ρ、温度为T、半径为r的球状气云系统,气体热运动能量:ET= RT= T (1) 将气体看成单原子理想气体,μ为摩尔质量,R为气体普适常数。为了得到气云球的的引力能Eg,想象经球的质量一点点移到无穷远,将球全部移走场力作的功就等于-Eg。
当球质量为m,半径为r时,从表面移走dm过程中场力做功:dW=- =-G( )1/3m2/3dm(2) 所以:-Eg=- ( )1/3m2/3dm= G( M5/3。于是:Eg=- (2)。
气体云的总能量: E=ET+EG (3)。灵魂星云将形成新的行星热运动使气体分布均匀,引力使气体集中。
现在两者共同作用。当E>0时热运动为主,气云是稳定的,小的扰动不会影响气云平衡;当E<0时,引力为主,小的密度扰动产生对均匀的偏离,密度大处引力增大,使偏离加强而破坏平衡,气体开始塌缩。
由E≤0得到产生收缩的临界半径:(4) 相应的气体云的临界质量为:(5) 原始气云密度小,临界质量很大。所以很少有恒星单独产生,大部分是一群恒星一起产生成为星团。
球形星团可以包含10^5→10^7个恒星,可以认为是同时产生的。 我们已知:太阳质量:MΘ=2*10^33,半径R=7*10^10,我们带入(2)可得出太阳收缩到今天这个状态以释放的引力能。
太阳的总光度L=4*10^33erg.s-1如果这个辐射光度靠引力为能源来维持,那么持续的时间是:很多证明表明,太阳稳定的保持着今天的状态已有5*10^9年了,因此,星坯阶段只能是太阳形成像今天这样的稳定状态之前的一个短暂过渡阶段。这样提出新问题,星坯引力收缩是如何停止的?此后太阳辐射又是以什么为能源?1.4恒星稳定期 主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。
如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原。