1.关于六年级数学的趣味小知识
用数学写的人生格言:干下去还有50%成功的希望,不干便是100%的失败——王菊珍
一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数值就越小。——托尔斯泰
时间是一个常数,但对勤奋者来说,是一个“变数”。用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍——雷巴柯夫
在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有哪些问题没有解决,需要我们去探索解决。——华罗庚
天才=1%的灵感+99%的血汗。——爱迪生
A=x+y+z
其中A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。——爱因斯坦
2.【小学六年级数学趣味题100道】
六年级一班第一小组种树,如果每人种5棵还剩14棵;如果每人种7棵就缺4棵.问这一小组有多少人?一共有多少棵树?用算术来先算人数:(14+4)/(7-5)=9思路是这样的:每人种五棵之后,剩下14棵,每人再多种两棵,则缺4棵,也就是在原来的种树的数量上如果再加4棵树,正好每人多种2棵,于是每人多种两棵,大家一共多种18棵,因此人数为18/2=9.再算种多少棵树:9 * 5 + 14 =59 或 7 * 9- 4= 59将一袋糖分给小朋友,如果分给大班的小朋友每人五块,则缺6块,如果分给小班的小朋友每人四块,则余四块.已知大班比小班少2个小朋友.这袋糖一共有多少块?(6+4+4*2)÷(5-4)=18(人)(大班人数) 18+2=20(人)(小班人数) 18*5-6=84(块) 假设小班人数与大班人数一样多,那么小班每人发了4块糖果,那么就多出来原来的4块加上后来假设后又多出来的8块了.答案:84人 (6+4+4*2)/(5-4)=18人(大班人数) 18+2=20人(小班人数) 18*5-6=84块 或 20*4+4=84块 说明:关键是理解4+4*2的含义,它表示假设小班人数与大班一样多,则若小班每人发4块,就一共可以多余(4+4*2)块.小明去商店买练习本,如果买8本,可以剩下1元钱,如果买12本,还差一元钱,每本练习本多少钱?小明一共带了多少钱?比较这两次,剩下1元钱 和 还差一元那么 两次前相差就是2元,但是多买了12-8=4本也就是说4本用掉2元,那么一本就是2/4=0.5元8*0.5+1=5元或者12*0.5-1=5元 给同学们教打球.每两人一组.每组分6个球,少10个;每组分4个球,少2个.共有多少组?有几个球?共有多少组(10-2)÷(6-4)李民的父亲将甲,乙两件上衣同时卖给一人,卖价均为a元,其中甲上衣盈利25%,乙上衣亏25%.请算一算这次生意是赔还是赚?若赔,赔了多少?是赔的,赔了2a/15甲和乙成本是2a+2a/15 盈利是指比成本多25%,亏是指比成本少25%甲的成本:a/(1+25%)=五分之四a乙的成本:a/(1-25%)=三分之四a两者的成本是4/5a+4/3a=32/15a=二又十五分之二a而两件衣服只2a所以是亏本了 3.有一个长方形,它的体积是102立方分米,如果长.宽.高都是质数,哪么这个长方体的表面积是多少?(要算式)1.甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的五倍,原来甲组有图书多少本?2.原来小明的画片是小红的3倍,后来两人各买了5张,这样小明的画片就是小红的2倍1.应该学过假设了吧?假设乙组的书有X本 ,那甲组有3x5(X-6)=3x+6X=18 甲有54本2.假设小红的是x 那么小明的是3X2(X+5)=3X+5X=5 小红有5本 小明有15本2.两个数相除商是8,被除数.除数与商的和是170,求被除数是多少?2.170-8=162 162/(8+1)=18 18*8=1448.有一块长方形体育场地,如果把它的长和宽各增加6米,面积将增加1236平方米,原来体育场地的周长是多少米?9.柳叔叔买来两筐苹果,每筐苹果数量一样.甲筐卖出150个,乙筐卖出194个,剩下的苹果甲筐是乙筐的3倍,原来两筐各有苹果多少个?9.194-150=44(个) 44/(3-1)=22(个) 194+22=216(个)8.1236-6*6=1200(平方米) 1200/6*2=400(米)小丽与小杰两人骑车,同时从相距65千米的两地相向而行,小丽的速度为15千米/时,小杰的速度为17.5米/时,问经过几小时,他们相距32.5千米?(这题是放在《分类讨论专题》上的,所以应该要分类讨论,请高手解答,做的好的追+) 第一种情况,两人还没相遇 (此时两人所走的路程之和为(65千米-32.5千米) (65千米-32.5千米)/(15千米/时+17.5米/时)=1小时 第二种情况,两人相遇后又各自前进至相距32.5千米.(此时两人所走的路程之和为65千米+32.5千米)/ (65千米+32.5千米)/(15千米/时+17.5米/时)=3小时 1、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,求奶糖块数.2、苹果和梨共有77千克,若拿出苹果的5/11和12千克梨,剩下的苹果数是梨的三倍,原来苹果和梨各多少千克?3、9棵树,种10行,行行有3棵,请问怎么种?4、有两个半径分别为6厘米、8厘米深度相等的圆柱形容器甲和乙,现在,甲容器里装满水倒入乙容器里,水深比乙容器的2/3低1厘米,求两个容器的深.在1-500中,能被 2整除的数有500/ 2=250个在1-500中,能被 3整除的数有500/ 3=166个在1-500中,能被 7整除的数有500/ 7= 71个在1-500中,能被 6整除的数有500/ 6= 83个在1-500中,能被14整除的数有500/14= 35个在1-500中,能被21整除的数有500/21= 23个在1-500中,能被42整除的数有500/42= 11个所以,在1~500中,不能被2整除,也不能被3整除,又不能被7整除的数有500-250-166-71+83+35+23-11=143个数.。
3.数学小知识,要六年级的
1、杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
2、一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。
由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
3、为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。
他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。
来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。
1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。
1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。
23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。
4、数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”
吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。
他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。
后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答: “我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。
但是,有些数字非记不可,也很容易记住……” 5、苹果树下的例行出步 1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25。
4.六年级趣味数学题,不要太长了
六年级趣味数学题 1、问5条直线最多将平面分为多少份? 2、太阳落下西山坡,鸭儿嘎嘎要进窝。
四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多? 3、9棵树种10行,每行3棵,问怎样种? 4、数学谜语:(“/”是分数线) 3/4的倒数 7/8 1/100 1/2 3.4 1的任何次方 以上每条打一成语。 5、一个数,去掉百分号后比原数增加了0.4455,原数是多少? 6、甲、乙、丙三人投资55万元办一个商店。
甲投资总数的1/5,余下的由乙、丙承担,且乙比丙多投资20%。乙投资多少万元? 7、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。
求井深和绳子各是多少? 8、一筐苹果分给甲、乙、丙。甲分得全部苹果的1/5加5个苹果,乙分得全部苹果的1/4加7个苹果,丙分得余下苹果的一半,最后剩下的是一筐苹果的1/8,求这筐苹果有多少个? 9、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人。
三个车间各有多少人? 10、有人用车把米从甲地运往乙地,装米的重车日行50千米,空车日行70千米,5日往返三次。甲乙两地相距多少千米? 11、兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍。
问,3年后兄弟二人各几岁?有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家, 每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香 蕉? 例题1:你让工人为你工作7天,给工人的回报是一根金条。金条平分成相连的7段,你必须在每天结束时给他们一段金条,如果只许你两次把金条弄断,你如何给你的工人付费? 例题2:现在小明一家过一座桥,过桥时候是黑夜,所以必须有灯。
现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会熄灭。
问小明一家如何过桥? 3、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么? 4、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。
可是当初他们三个人一共付出$30那么还有$1呢? 5、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同, 而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。
他们每人怎样才能取回黑袜和白袜各两对呢? 6、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离? 7、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少? 8、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了? 9、对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。
10、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下? 11、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。
每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。
第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。
一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子? 12、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢? 13、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水? 14 有3顶红帽子,4顶黑帽子,5顶白帽子。
让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。
(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自。
5.六年级上册趣味数学
狐狸买葱与数学狐狸瘸着腿一拐一拐地走着,心里琢磨着怎样才能发财. 瘸腿狐狸看见老山羊在卖大葱,走过去问:“老山羊,这大葱怎样卖法?共有多少葱啊?” 老山羊说:“1千克葱卖1元钱,共有100千克.” 瘸腿狐狸眼珠一转,问:“你这葱,葱白多少,葱叶又是多少呀?” 老山羊颇不耐烦地说:“一棵大葱,葱白占20%,其余80%都是葱叶.” 瘸腿狐狸掰着指头算了算,说:“葱白哪,1千克我给你7角钱.葱叶哪,1千克给你3角.7角加3角正好等于1元,行吗?” 老山羊想了想,觉得狐狸说得也有道理,就答应卖给他了.狐狸笑了笑,开始算钱了. 狐狸先列了个算式: 0.7*20+0.3*80=14+24=38(元),然后说:“100千克大葱,葱白占20%,就是20千克.葱白1千克7角钱,总共是14元;葱叶占80%,就是80千克,1千克3角钱,总共是24元.合在一起是38元.对不对?” 老山羊算了半天,也没算出个数来,只好说:“你算对了就行.” “我狐狸从不蒙人!给你38元,数好啦!”狐狸把钱递给了老山羊.老山羊卖完葱往家走,总觉得这钱好像少了点,可是少在哪儿呢?想不出来.他低头看见小鼹鼠从地里钻了出来.他让小鼹鼠帮忙算算这笔帐. 小鼹鼠说:“你原来大葱是1千克卖1元.你有100千克,应该卖100元才对,瘸狐狸怎么只给你38元呢?” 老山羊点了点头,知道自己吃亏了.可是他不明白,自己是怎样吃的亏? 鼹鼠说:“狐狸给你1千克葱白7角,1千克葱叶3角,合起来算是2千克才1元钱,这你已经吃一半亏了.” 老山羊问:“吃一半亏,我也应该得50元才对,怎么只得38元呢?” 鼹鼠写了一个算式: (1-0.7)*20+(1-0.3)*80=6+56=62(元).“你1千克葱白吃亏0.3元,20千克吃亏6元;1千克葱叶吃亏0.7元,80千克吃亏56元,合起来正好少卖了62元.” 老山羊掉头就往回跑,看见狐狸正在卖葱,每千克卖2元.老山羊二话没说,一低头,用羊角顶住瘸腿狐狸的后腰,一直把他顶进了水塘里.。
6.小学六年级的数学趣味题 最好有答案过程
1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。
在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。
这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。
苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。
他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。
据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。
提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。 冯·诺伊曼脸上露出惊奇的神色。
“可是,我用的是无穷级数求和的方法.”他解释道 2、有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。
“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。
直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。
当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候? 答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。
就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。
因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。
于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。
地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑. 3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。
假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。
在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。
飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。
但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。
原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。
则b/2-a是。
7.小学六年级数学趣味题
小蚂蚁在蚁洞里住久了,便想出去闯天下。
于是,它告别了小伙伴,带着一些食物走向了它十分向往的大城市。 一天它来到了数字城。
小蚂蚁刚踏进城门,就被两个圆头圆脑的家伙给拦住了,它定眼一看,这是两个“0”。两个零同时说:“什么人,想进数字城?先拿出智商凭证,没有,就先过了我们这一关。
”小蚂蚁好奇了:这里干什么呀,进门先要做测试?好,就让我来试一试。零守卫摇身一变,成了个空空的“九宫格”。
它叫来许多数字,对小蚂蚁说:“把1——9填进格子中,使横、竖每行每列的和都相等。”小蚂蚁一看,大笑:“这种东西能难得住我?”说完,随手大笔一挥,写出来: 4 9 2 3 5 7 8 1 6 守卫一下子就不见了,小蚂蚁的眼前展现出一条宽阔的大道。
小蚂蚁踏上了这条路,正当它高高兴兴的时候,肚子却饿的“咕咕”叫了。小蚂蚁打开包裹,呀,食物和钱都不见了,可能是路上被偷了,这可怎么办呢?突然他看见前面的烧饼店聚满了数字,原来是店主在搞活动。
店主举着喇叭大喊:“谁能回答出这道题就奖三个烧饼。 一个饼煎一面要三分钟,现在锅子能同时煎两个饼,问三个烧饼两面都要煎最快要几分钟?”客人们都说要12分钟。
小蚂蚁陷入了沉思,这道题不可能这么简单,最少,最少,啊,有了!小蚂蚁对周围的数字们说:“可以这样做,把1号和2号饼先煎三分钟,这时候两个饼都熟了一面。 然后把2号饼取出,放入3号饼,同时1号饼翻身再煎三分钟,这时的1号饼已经全部熟了,3号饼只熟了一面。
最后再把2号和3号饼不熟的一面一起煎三分钟,就大功告成了。这种方法只要9分钟。”
店主宣布小蚂蚁获胜,并且奖给它三个烧饼。 事后小蚂蚁想,虽然在这里过的不是很顺利,但是有许多乐趣。
想着想着,它就想留在这不走了。可是,办手续的时候官员又给它出了一道测试题:彼德不喜欢吃面条,苏伟不喜欢吃汉堡,喜欢吃面条的是法国人,喜欢吃汉堡的是美国人。
里奇不是中国人,他也不喜欢吃面条。问,这三个人分别是什么国家的人?小蚂蚁左思右想得不到答案,同学们,你们能帮助它吗? 里奇是美国人 苏伟是法国人 彼得是中国人 。
8.求小学六年级简单数学趣味题
、黑兔、兔和白兔三只兔子在赛跑。黑免说:“我跑得不是最快的,但比白兔快。”请你说说,谁跑得最快?谁跑得最慢?
( )跑得最快,( )跑得最慢。
2、三个小朋友比大小。根据下面三句话,请你猜一猜,谁最大?谁最小? (1)芳芳比阳阳大3岁; (2)燕燕比芳芳小1岁; (3)燕燕比阳阳大2岁。 ( )最大,( )最小。
3、根据下面三句话,猜一猜三位老师年纪的大小。
(1)王老师说:“我比李老师小。” (2)张老师说:“我比王老师大。”
(3)李老师说:“我比张老师小。” 年纪最大的是( ),最小的是( )。
4、光明幼儿园有三个班。根据下面三句括,请你猜一措,哪一班人数最少?哪一班人数最多? (1)中班比小班少; (2)中班比大班少; (3)大班比小班多。 ( )人数最少,( )人数最多。
5、三个同学比身高。 甲说:我比乙高; 乙说:我比丙矮; 丙:说我比甲高。 ( )最高,( )最矮。
6、四个小朋友比体重。 甲比乙重,乙比丙轻,丙比甲重,丁最重。
这四个小朋友的体重顺序是: ( )>( )>( )>( )。
7、小清、小红、小琳、小强四个人比高矮。
小清说我比小红高;小琳说小强比小红矮; 小强说:小琳比我还矮。
请按从高到矮的顺序把名字写出来: ( )、( )、( )、( )。
8、有四个木盒子。蓝盒子比黄盒子大;蓝盒子比黑盒子小;黑盒子比红盒子小。请按照从大到小的顺度,把盒子排队。
( )盒子,( )盒子,( )盒子,( )盒子。
9.张、黄、李分别是三位小朋友的姓。根据下面三句话,请你猜一猜,三位小朋友各姓什么?
(1)甲不姓张; (2)姓黄的不是丙;(3)甲和乙正在听姓李的小朋友唱歌。
甲姓( ),乙姓( ),丙姓( )。
10.张老师把红、白、蓝各一个气球分别送给三位小朋友。根据下面三句话,请你猜一猜,他们分到的各是什么颜色的气球?
(1)小春说:“我分列的不是蓝气球。”
(2)小宇说:“我分到的不是白气球。”
(3)小华说:“我看见张老师把蓝气球和红气球分给上面两位小朋友了。” 小春分到( )气球。小宇分到( )气球。小华分到( )气球。
11.甲、乙、丙三个小朋友赛跑。得第一名的不是甲,得第二名的不是丙,乙看见甲和丙都在自己的前面到达了终点。
甲得了第( )名,乙得了第( )名,丙得了第( )名。
12.A、B、C三名运动员在一次运动会上都得了奖。他们各自参加的项目是篮球、排球和足球。现在我们知道:(1)A的身材比排球运动员高;(2)足球运动员比C和篮球运动员都矮。诸你想一想:
A是( )运动员,B是( )运动员,C是( )运动员。
13、爸爸买了3个皮球,两个红的,一个黄的。哥哥和妹妹都想要。爸爸叫他们背对着背坐着,爸爸给哥哥塞了个红的,给妹妹塞了个黄的,把剩下的一个球藏在自己背后。爸爸让他们猜他手里的球是什么颜色的,谁猜对了,就把球给谁。那么,谁一定能猜对呢? ( )。
14、小菲、小南、小阳三个小朋友,分别戴着红、黄、蓝三顶帽子,排着队儿向前走,谁也不回头。小南能看见一顶红帽子和一顶黄帽子,小菲只能看到一顶黄帽子,而小阳一顶帽子也看不到。你知道走在第一个的是谁?谁又走在第二个?最后一个又是谁呢?他们又各自戴着什么颜色的帽子呢? ( )走在第一个,戴着( )帽子; ( )走在第二个,戴着( )帽子; ( )走在最后,戴着( )帽子;
15、3个小朋友下课后排队做游戏,他们一共最多可以有几种不同的排列法?
16、一个小组的小朋友排队去做游戏,从前往后数排第3个,从后往前数排在第 5个,共有多少小朋友在做游戏?
17、按规律填数:
0,1,3,6,10,( ),( )。
18、小明家住在5楼,小明从一楼回到家共爬了几层楼梯?
19、小猴与小兔去摘桃,小猴摘下15个桃,当小猴将自己的桃分3个给小兔子 时,它俩的桃就一样多,你知道小兔子摘了多少个桃?
20、小明回家时看到爸爸正在锯一根钢管,小明问爸爸要锯多少时间,爸爸对 小明说:“锯一段要10分钟,要将一根钢管锯成5段。”并让小明猜猜共需要多 少时间,你能帮忙吗?
21、妈妈给姐姐买了18枝铅笔,给弟弟买了10枝铅笔,姐姐分给弟弟几枝,姐 弟俩的铅笔就一样多?
9.告诉我一些数学趣味故事六年级
故事是这样的
以前在各大学校里都流传着这么一个恐怖故事
说是A校有不干净的东西 每当十五的时候 学校门口的鲁迅像的眼睛就会动
所有教学楼都会停电
楼梯会从原来的13阶变成14阶
实验室的水龙头放出来的水会变成红色
还有1楼尽头的那个厕所只要有人进去了就再也出不来了
于是 一群不信邪的孩子们约好15那天去探险
晚上12点 他们准时来到了那所学校的门口
鲁迅像的眼睛望着左边 他们记下了 生怕出来的时候记不得有没有动过
他们来到了教室 打开开关 咦 不是亮着的么?
“骗人。”一个男孩发出抱怨
“再看看吧。”
来到了楼梯口 “1 2 3。13没错阿 是13阶阿?”
孩子们有点怀疑传说的真实性了
于是他们又来到了实验室 水龙头打开了 白花花的水流了出来
“真没劲阿 我们白来了!”
刚开始的刺激感都消去了一半。
最后 他们来到了那个厕所
女孩子虽然口上说不相信 可是还是不敢进去
于是让刚刚很拽地说不怕的小C进去
看了表 1点整
2分钟后 男生出来了
“切 都是骗人的”
孩子们不欢而散。
出门时 一个看门人发现了他们 喝斥他们怎么可以那么晚还在学校逗留。孩子们撒腿就跑
小B特地注意了一下门口的石像 没错 眼睛还是朝左看得
“骗人的”他嘀咕了一声
“喂 小B么?小C昨天晚上和你们一起出去玩 怎么还没回来?”第二天早上 小C的妈妈打电话过来询问。
小C也没有去学校上课
孩子们隐约感到不对了
于是 他们将晚上的探险之事告诉了老师和家长
大家在大人的陪同下回到了那个学校。
“什么? 我们的鲁迅像的眼睛一直是朝右看的阿。”校长听了孩子们的叙述 不可思议的说。
“可是我们昨天来的时候是朝左看的阿”
出门一看 果然 是朝右看得。
“可是昨天的确有电阿”
“昨天我们这里全区停电。你们怎么开得灯?”
“还有楼梯!”孩子们迅速跑到楼梯口
“1 2 3。12?”
“我们的楼梯一直是12阶的。”
“不可能!!!”
“还有实验室”一个孩子提醒道
“对 实验室”
一行人来到实验室 就在昨天他们开过的那个水龙头下 有一摊暗红色的痕迹。
“是血迹。”
“那。小C昨天还去过那个厕所。”大家都感到了一阵莫名的恐惧
“走 我们去看看”校长也意识到了事情的严重性
推开门。
小C的尸体赫然出现在大家的眼前
因为惊恐而睁大的双眼
被割断的喉管血淋淋的
内脏散落在已经干掉的水池里。
“阿。”小C的妈妈当场昏了过去
几个老师马上冲出去呕吐。
小B也被吓得目瞪口呆
在他晕过去的前一秒钟
他瞥见小C的手表
指针停在了1点。
就是小C进去的那个时候。
顺便说一下 他们去探险的那天晚上 并没有门卫。
将此贴转向5个以上的论坛不会魔鬼缠身且能实现一个愿望 。
不回帖者晚上凌晨过后往往。。
对不起,我很不情愿,但是。。请各位原谅!