关于5年级数学小知识

2022-07-22 综合 86阅读 投稿:凌风啸

1.小学五年级数学复习

五年级数学基础知识复习资料 更多相关文章 相关课件 (一)整数1、自然数和0都是整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的因数。 7、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、…其中最小的倍数是3 ,没有最大的倍数。9、个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

10、个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

11、一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

12、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

13、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 14、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

15、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

16、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3*5,3和5 叫做15的质因数。

17、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2*2*718、几个数公有的因数,叫做这几个数的公因数。

其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。

19、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:20、1和任何自然数互质。 相邻的两个自然数互质。

两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。21、如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

22、如果两个数是互质数,它们的最大公因数就是1。 23、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

24、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 25、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 2、一个小数由整数部分、小数部分和小数点部分组成。

数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。 3、在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 (三)分数1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

3、分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

5、分子分母是互质数的分数叫做最简分数。 6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)求最大公因数和最。

2.五年级数学重点

还有一些文字知识:长方体的表面积=(长*宽+长*高+宽*高)*2 S=(ab+ah+bh)*2长方体的体积=长*宽*高 V=abh正方体的表面积=棱长*棱长*6 S=6a²正方体的体积=棱长*棱长*棱长 V=a³长方体(或正方体)的体积=底面积*高 V=sh一个数的最小倍数和最大因数都是它本身。

一个数的因数的个数是有限的。一个数的倍数的个数是无限的。

自然数中,是2的倍数的叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

1不是质数,也不是合数。计量体积要用体积单位,常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm³,dm³和m³。

1dm³=1000cm³ 1m³=1000dm³所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。

计量液体的体积,常用容积单位升和毫升,也可以写成L和ml。1L=1000ml 1L=1dm³ 1ml=1cm³分子比分母小的分数叫真分数。

真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数。

假分数大于1或等于1。分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

这叫做分数的基本性质。把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。同分母分数相加减,分母不变,只把分子相加减。

被除数被除数÷ 除数=————— 除数在一组数据中,出现次数最多的数,是这组数据的众数。在一组数据中,众数可能不止一个,也可能没有众数。

3.人教版数学五年级上册知识梳理

标签: 原创学生整理知识梳理总复习青岛版五年级上册数学杂谈 分类: 教学 五年级上册数学知识梳理 第一单元1、一个因数是小数时,可以按照整数乘法来算,最后再点小数点。

2、计算小数乘小数,可以转化成整数乘法进行运算。3、两个因数中共有几位小数,积就有几位小数。

4、如果积位数不够,在数前添0。5、计算小数乘法时,可先按整数乘法来算,再根据因数的小数位数确定积的小数位数。

6、整数乘法运算律对小数乘法同样适用(先乘除,后加减)。第二单元1、对称图形如果从中间对折,两边会完全重合。

2、将图形沿着一条直线对折,如果直线两侧的部分能完全重合,这样的图形叫轴对称图形。3、折痕所在的这条直线叫做它的对称轴。

4、一个图形可以通过平移或旋转拼成一个更大的图形。第三单元:1、计算小数除法时,对小数点视而不见,用整数除法的方法计算。

算出得数后,有余数的话,在余数后面加零,再用余数加零后的数除以除数,如还有余数再加零,最后在商上点小数点,要把小数点点到第一个余数的零的商上面。2、计算小数除以小数的除法时,先把除数的小数点向右移为整数,然后除数向右移几位,被除数也向右移几位,如被除数数位不够,就在被除数后面加零。

3、一般情况下,用四舍五入法求商的近似值。4、小数部分从某一位起,一个数字或几个数字依次不断地重复出现,这样的数叫做循环小数。

5、小数部分的数的位数是有限的叫做有限小数,位数无限的叫无限小数。6、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上各记一个圆点。7、在一个算式里,如果有中括号和小括号,要先算小括号里的,再算中括号里的。

8、小数乘、除法都是转化成整数乘、除法来计算的。第四单元:等式:左右两边相等的算式叫做等式 。

1、像x+300=400、10x=1600、3x+100=1000……这样含有未知数的等式,叫做方程。 2、等式左右两边同时加、减、乘或除以相同的数,等式的左右两边不变。

3、使方程左右两边的未知数得值,叫做方程的解。求方程的解的过程叫做解方程。

第五单元:多边形的面积4、平行四边形:两组对边分别平行的四边形叫做平行四边形。从平行四边形一条边上的一点到它对边的垂直线段,是平行四边形的高,这条对边是平行四边形的底。

把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形相等。长方形的长等于平行四边形的底,宽等于平行四边形的高。

平行四边形的面积等于底x高。用字母表示:S=ah5、三角形:两个完全相同的直角三角形能拼成一个平行四边形。

三角形的面积=底*高÷2,用字母表示:S=ah÷26、梯形:特征4个角、四边形、只有一组对边平行。只有一组对边平行的四边形叫梯形。

两腰相等的梯形叫等腰梯形。互相平行的一组对边分别是梯形的上底和下底,不平行的一组对边是梯形的腰。

从上底的一点到下底的垂直线段是梯形的高。一个梯形能分成一个三角形和一个平行四边形。

两个完全一样的梯形拼成了一个平行四边形。梯形的面积=(上底+下底)*高÷2,用字母表示:S=(a+b)*h÷27、回顾整理:(第5单元的)特 征 面 积长 方 形 有四条边,对边相等;四个角都是直角 S=ab正 方 形 有四条边,对边相等;四个角都是直角 S=2a平 行 四边 形 有四条边,对边互相平行、相等;四个角分别相等 S=ah三 角 形 有三条边,它是固定物体;内角和180。

S=ah÷2梯 形 有四条边,只有一组互相平行;角与角无关系 S=(ab)*h÷28、我发现平行四边形、三角形、梯形的面积公式推导都用到了转化的方法。第六单元:1、我发现,2的倍数的特征是个位上是0、2、4、6、8。

2、我发现,5的倍数的特征是个位上是0、5。3、我发现,一个数各个数位上数的和是3的倍数,这个数就是3的倍数。

4,自然数中,有2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。5,像2、3、5、、、、、、这样只有1和它本身两个因数的树,叫做质数(素数);像4、6、8、、、、、这样除了1和它本身,还有其他因数的数,叫做合数;1只有一个因数,它既不是质数也不是合数。

6,把一个合数用质因数相乘的形式表达出来,叫做分解质因数。第七单元1、用一个单位长度表示一定的量,根据数据的大小描出各点,然后把各点用线段顺次连接起来,所得统计图叫做折线统计图。

2、如果只需要表示数量的大小,适合采用条形统计图,如果需要反映数量的增减变化情况,则需要采用折线统计图3、做统计图时注意:1,标题、2,时间、3,箭头、4,单位、5,刻度(从零开始)、6,制图、7,数据。

4.小学五年级数学知识点

小学五年级数学上册期末复习知识点归纳 第一单元小数乘法 1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5*3表示1.5的3倍是多少或3个1.5的和的简便运算。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。 如:1.5*0.8就是求1.5的十分之八是多少。

1.5*1.8就是求1.5的1.8倍是多少。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。 3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10) ⑴四舍五入法;⑵进一法;⑶去尾法 5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。 7、运算定律和性质: 加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)乘法分配律:(a+b)*c=a*c+b*c【(a-b)*c=a*c-b*c】 除法:除法性质:a÷b÷c=a÷(b*c) 第二单元小数除法 8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。 9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。

商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。 10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。 11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。 13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32. 14、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。 第三单元观察物体 15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

第四单元简易方程 16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。 加号、减号除号以及数与数之间的乘号不能省略。

17、a*a可以写作a•a或a ,a 读作a的平方。 2a表示a+a 18、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数*因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商*除数 除数=被除数÷商 21、所有的方程都是等式,但等式不一定都是等式。 22、方程的检验过程:方程左边=…… 23、方程的解是一个数; =…… 解方程式一个计算过程。

=方程右边 所以,X=…是方程的解。 第五单元多边形的面积 23、公式:长方形:周长=(长+宽)*2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)*2 面积=长*宽 字母公式:S=ab 正方形:周长=边长*4 字母公式:C=4a 面积=边长*边长 字母公式:S=a 平行四边形的面积=底*高 字母公式: S=ah 三角形的面积=底*高÷2 ——【底=面积*2÷高;高=面积*2÷底】 字母公式: S=ah÷2 梯形的面积=(上底+下底)*高÷2 字母公式: S=(a+b)h÷2 ——【上底=面积*2÷高-下底,下底=面积*2÷高-上底;高=面积*2÷(上底+下底)】 24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形, 长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底; 长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高; 长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍, 因为长方形面积=长*宽,所以平行四边形面积=底*高。

因为平行四边形面积=底*高,所以三角形面积=底*高÷2 26、梯形面积公式推导:旋。

5.5年级的数学小知识

O”的自述 人人都轻视我,认为我可有可无、有时读数不读我,有时计算中一笔把我划掉。

可你们知道吗?我也有许多实实在在的意义。 1.我表示“没有”。

在数物体时,如果没有任何物体可数,就要用我来表示。 2.我有占数位的作用。

记数时,如果数的某一数位上一个单位也没有,就用我来占位。比如:1080中百位、个位上一个单位也没有就用:0来占位。

3.我表示起点。直尺、秤的起点都是用我来表示的。

4.我表示界限。温度计上,我的上边叫“零上”,我的下边叫“零下”。

5.我可以表示不同的精确度。在近似计算中,小数部分末尾的我可不能随便划去。

如:7.00、7.0、7的精确度是不同的。 6.我不能做除数。

让我做除数可就麻烦了,因为我做除数是没有意义的。 以后你们还会学到我的很多特殊性质、小朋友,请你不要看不起我。

为什么电子计算机要用二进位制 由于人的双手有十个手指,人类发明了十进位制记数法。然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻。

究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的记数方法又是什么呢? 这要从计算机的工作原理说起。计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电。

计算机信息存储常用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化。近年来用光盘记录信息的做法也越来越普遍,光盘上海一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用。

由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费。因此,十进位制不适合于作为计算机工作的数字进位制。

那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制。 二进位制所需要的记数的基本符号只要两个,即0和1。

可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点。总之,二进位制的一个数位正好对应计算机介质的一个信息记录点。

用计算机科学的语言,二进位制的一个数位称为一个比特(bit),8个比特称为一个字节(byte)。 二进位制在计算机内部使用是再自然不过的。

但在人机交流上,二进位制有致命的弱点——数字的书写特别冗长。例如,十进位制的100000写成二进位制成为11000011010100000。

为了解决这个问题,在计算机的理论和应用中还使用两种辅助的进位制——八进位制和十六进位制。二进位制的三个数位正好记为八进位制的一个数位,这样,数字长度就只有二进位制的三分之一,与十进位制记的数长度相差不多。

例如,十进位制的100000写成八进位制就是303240。十六进位制的一个数位可以代表二进位制的四个数位,这样,一个字节正好是十六进位制的两个数位。

十六进位制要求使用十六个不同的符号,除了0—9十个符号外,常用A、B、C、D、E、F六个符号分别代表(十进位制的)10、11、12、13、14、15。这样,十进位制的100000写成十六进位制就是186A0。

二进位制和八进位制、二进位制和十六进位制之间的换算都十分简便,而采用八进位制和十六进位制又避免了数字冗长带来的不便,所以八进位制、十六进位制已成为人机交流中常用的记数法。为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。

可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。

譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。

时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。

譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“〃”来表示。时间和角度都用分、秒作小数单位。

这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。

这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。长度单位的自述 一天,长度单位的弟兄们到一起开会,主持会议的是“公里”老大哥,它首先发了言:“我们长度等单位是个国际大家庭,今天来参加会的是我们大家庭中的少数派,人们对我们非常生疏,因此,我们先作一下自我介绍。”

首先从会场中央站起来一个说道:“我叫‘引’,是中。

6.小学五年级数学复习资料

五年级数学基础知识复习资料 更多相关文章 相关课件 (一)整数 1、自然数和0都是整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的因数。 7、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。 8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、…其中最小的倍数是3 ,没有最大的倍数。 9、个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

10、个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

11、一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

12、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

13、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 14、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

15、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

16、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3*5,3和5 叫做15的质因数。

17、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2*2*7 18、几个数公有的因数,叫做这几个数的公因数。

其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。

19、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 20、1和任何自然数互质。 相邻的两个自然数互质。

两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 21、如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

22、如果两个数是互质数,它们的最大公因数就是1。 23、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 …… 3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

24、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 25、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数 1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 2、一个小数由整数部分、小数部分和小数点部分组成。

数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。 3、在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 (三)分数 1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

3、分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

5、分子分母是互质数的分数叫做最简分数。 6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)求最大公因数和。

7.小学五年级数学学习重点有哪些

其中,小数的乘法和除法是为了让在学生再掌握了整数的加减乘除运算、小数的性质以及小数加法、减法的基础上进行的运算,目的是培养学生小数的乘除法运算能力。

简单方程中的难点有:用字母表示数字、等式有哪些性质、解简易方程、用简易方程表示相等关系,从而解决一些实际数学问题等内容,最终目的是为了发展学生的思维能力,提高解决实际问题的能力。学生在学习过程中要抓住这些重点,多加练习,达到触类旁通的效果。

在几何图形这类题上,本年级安排了多边形的面积、周长计算两个单元。着重让学生认识各种图形的特征、图形之间关系以及图形之间的相互转化,掌握四边形、三角形、面积公式,在解决这些题目时,通常会用到平移、旋转等方法。

统计与概率也是小学五年级数学学习重点之一,在统计与概率方面,小学五年级着重让学生学习有关可能性的知识,即不可能事件、可能事件等。在教学中,老师重点通过实验向学生证明事件的可能性,让学生学会处理一些事件发生的可能性。

综上所述,要清楚小学五年级数学学习重点,首先得全面了解小学五年级数学教材中具体包括哪些方面的内容,然后结合老师课堂讲授的重点,判断哪些内容是本年级学习的重点。然后通过多做练习,总结同类题型的规律,做到触类旁通。

不要忽视的是,数学学习中同样需要记忆,比如公式,但是这种记忆需要结合具体题型,而不是死记硬背。

8.小学数学五年级的知识点有哪些

五年级第一学期数学概念综合1、0既不是正数,也不是负数。

正数都大于0,负数都小于0。通常情况下正、负数表示两种相反关系的量,如果盈利用正数表示,那么亏损就用负数,如果高于海平面用正数表示,那么低于海平面用负数表示。

水沸腾的温度是100℃,水结冰的温度是0℃。2、在数不规则图形的面积时不满一格的看作半格。

先数满格,再数半格。3、长方形的周长=(长+宽)*2 长方形的面积=长*宽 正方形的周长=边长*4 正方形的面积=边长*边长4、沿着平行四边形的任意一条高剪开,然后通过移动拼成一个长方形。

长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积=长*宽,所以平行四边形的面积=底*高,用字母表示S=a*h。

5、将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积等于底*高,所以三角形的面积等于底*高÷2。

用字母表示S=a*h÷2。 等底等高的两个三角形的面积相等。

6、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。

7、将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积=底*高,所以梯形的面积=(上底+下底)*高÷2字母表示S=(a+b)*h÷2.8、分母是10、100、1000……的分数都可以用小数表示。

分母是10的分数写成一位小数,表示十分之几。分母是100的分数写成两位小数,表示百分之几。

分母是1000的分数写成三位小数,表示千分之几。小数点左边第一位是个位,计数单位个(1)小数点左边第二位是十位,计数单位十(10)小数点右边第一位是十分位,计数单位十分之一(0.1)小数点右边第二位是百分位,计数单位百分之一(0.01)小数点右边第三位是千分位,计数单位千分之一(0.001)小数部分最高位是十分位,最大的计数单位是十分之一。

相邻两个计数单位之间的进率是10。9、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一)0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。

10、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。11、用“万”作单位:1、在万位后面点上小数点;2、添个“万”字。

用“=”号。用“亿”作单位:1、在亿位后面点上小数点;2、添个“亿”字。

用“=”号。注意:改写不能改变原数的大小。

省略万后面的尾数:要看“千”位,用四舍五入法取近似值。用“≈”号。

省略亿后面的尾数:要看“千万”位,用四舍五入法取近似值。用“≈”号。

保留整数,就是精确到个位,要看小数部分第一位(十分位)。保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)。

保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)。注意:在表示近似值时末尾的“0”一定不能去掉。

例如,一个小数保留两位小数是1、50,末尾的“0”不能去掉。虽然1、50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。

12、计算小数加减法时,要把小数点对齐,也就是相同数位对齐。13、找规律:1、找到周期;2、将个数÷周期;3、余数是几就是第几个。

4、要算每个项目一共有几个,可以分三步去做:(1)每几个为一组;(2)每组中有几个;再乘一共有组数(3)最后加上余数中的个数就等于一共有多少个。14、解决问题中的策略:用一一列举法将可能的情况用列表法全部列举出来,列举时的技巧是先考虑数字较大的(放在第一行)。

15、在计算小数乘法时(1)算:按照整数乘法的法则进行计算;(2)看:两个因数中一共有几位小数(3)数:就从积的末尾起数出几位;(4)点:点上小数点;(5)去:去掉小数末尾的0。16、一个小数乘10、100、1000……只要把小数点向右移动一位、两位、三位……一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……17、1平方千米就是边长1000米的正方形的面积,等于1000000平方米。

1公顷就是边长100米的正方形的面积,等于10000平方米。 1平方千米=100公顷。

1公顷=100公亩=10000平方米18、整数加、减、乘、除法的运算定律对于小数也同样适用。加法交换律:a+b=b+a 加法结合律:(a+b)+c= a +(b+c)乘法交换律:a*b=b*a 加法结合律:(a*b)*c= a *(b*c)减法的性质:a―b―c = a―(b+c)除法的性质:a÷b÷c = a÷(b*c)19、除数是小数的除法,首先看除数一共有几位小数,然后就根据商。

9.(人教版)五年级上册数学复习资料

小数乘法和除法 1、小数乘法的意义 小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数乘小数的意义是求这个数的十分之几、百分之几、千分之几…… 2、小数乘法的计算法则 计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的末位起数出几位,点上小数点。 3、小数除法的意义 小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。

4、除数是整数的小数除法计算法则 除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在被除数的末尾添0再继续除。 5、除数是小数的除法计算法则 除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。

6、循环小数的意义一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。 小数部分的位数是有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。

循环小数是无限小数。7、循环节的意义 一个循环小数的小数部分中。

依次不断地重复出现的数字,叫做这个循环小数的循环节。 循环节从小数部分第一位开始的,叫做纯循环小数。

循环节不是从小数部分第一位开始的,叫做混循环小数二、整数、小数四则混合运算和应用题1、四则混合运算顺序整数、小数四则混合运算的顺序与整数四则混合运算的顺序完全相同,整数四则混合运算的运算定律对小数同样适用。 一个算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算;如果有括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。

2、解答应用题的步骤(1) 弄清题意,并找出已知条件和所求问题;(2) 分析题里数量间的关系,确定先算什么,再算什么,最后算什么;(3) 确定每一步该怎样算,列出算式,算出得数;(4) 进行检验,写出答案三、多边形面积的计算平行四边形 面积=底*高三角形 面积=底*高÷2 梯形 面积=(上底+下底)*高÷2四、简易方程1、方程的意义 含有未知数的等式,叫做方程。2、方程和等式的关系 3、方程的解和解方程的区别 使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。4、列方程解应用题的一般步骤(1) 弄清题意,找出未知数,并用x表示。

(2) 找出应用题中数量之间的相等关系,列方程。(3) 解方程。

(4) 检验,写出答案。5、数量关系式加数=和 - 另一个加数 减数=被减数 – 差 被减数= 差 + 减数因数=积 ÷ 另一个因数 除数=被除数 ÷ 商 被除数=商 * 除数五、统计与可能性1、在我们生活中有很多事件是不确定的,如何求事件发生可能性的大小是本节知识的重点。

2、感受等可能事件发生的可能性,会用分数进行表示;会用数学语言描述获胜的可能性。3、投掷硬币,每次正面、反面朝上的可能性是12。

4、中位数和平均数的区别 中位数:把一组数据按照大小顺序排列后,最中间的数据就是中位数; 平均数:是指在一组数据中所有数据之和再除以数据的个数。即平均数=总数÷总分数 小学五年级全科目课件教案习题汇总语文数学英语- 5 - 知识回顾 三、多边形面积的计算 名称 图形 计算公式 平行四边形 面积=底高 Sah 三角形 面积=底高2 12 Sah 梯形 面积=(上底下底)高2 Sa梯形 (+b)h2 例6 如图,梯形的面积是63平方米,高是7米,已知上底比下底少4米,求下底的长度。

例7 如图,长方形的面积是86平方米,宽为6米。- 6 - BE长为6米,将弧AE平移到FC。

求阴影部分的面积。 知识回顾 四、简易方程 1、方程的意义 含有未知数的等式,叫做方程。

2、方程和等式的关系 3、方程的解和解方程的区别 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤 (1) 弄清题意,找出未知数,并用x表示。 (2) 找出应用题中数量之间的相等关系,列 方程。

(3) 解方程。 (4) 检验,写出答案。

- 7 - 5、数量关系式 加数=和 - 另一个加数 减数=被减数 – 差 被减数= 差 + 减数 因数=积  另一个因数 除数=被除数  商 被除数=商  除数 例8 用含有字母的式子表示下面的数量关系 (1)x的7倍; (2)x的5倍加上6; (3)5减x的差除以3; (4)200减5个a; (5)比7个b多2的数。 例9 要修一段公路,平均每天修c米,修了6天,还剩下b米。

(1) 用含有字母的式子表示这段公路有多少 米; (2) 根据这个式子,分别求c等于50,等于200。

10.小学一到五年级数学知识重点汇总(详细)

小学五年级全科目课件教案习题汇总语文数学三 单 元 有两个相对的面是正方形,长方体中相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点. 2、正方体的特征:正方体有6个面,这6个面都是正方形,所有的面完全相同;有12条棱,所有的棱长度相等;有8个顶点. 正方体可以看成是长、宽、高都相等的长方体. 3、相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高. 4、长方体或者正方体的12条棱的总长度叫做他们的棱长总和. 长方体的棱长总和=(长+宽+高)*4, 用字母可以表示为=C长方体(a+b+h)4. 正方体的棱长总和=棱长*12,用字母可以表示为=12aC正方体. 5、长方体或者正方体6个面的总面积叫做它的表面积. 长方体的表面积=(长*宽+长*高+宽*高)*2,用字母表示为=(ab+ah+bh)2S长方体. 正方体的表面积=棱长*棱长*6,用字母表示为2=6aS正方体. 6、物体所占空间的大小叫做物体的体积. 计量体积要用体积单位,常用的体积单元有立方厘米、立方分米、立方米,用字母表示为3cm、3dm、3m.3311000dmcm,3311000mdm. 7、棱长是1 cm的正方体,体积是13cm.一个手指尖的体积大约是13cm. 棱长是1 dm的正方体,体积是13dm.一个粉笔盒的体积大约是13cm. 棱长是1 m的正方体,体积是13m.用3根1 m长的木条,做成一个互成直角的架子架在墙角,它的体积是13cm. 8、长方体的体积=长*宽*高,用字母表示为=abhV长方体. 正方体的体积=棱长*棱长*棱长,用字母表示为3=aV正方体. 长方体和正方体的统一公式:支柱体的体积=底面积*高. 9、容器所能容纳物体的体积,叫做它的容积.计量容积一般就用体积单位,计量液体的体积,常用容积单位升和毫升,用字母表示是L和ml. 4 311Ldm,311mlcm,11000Lml 10、长方体或正方体容器的容积的计算方法,跟体积的计算方法相同.但是要从容器里面量出长、宽、高. 11、形状不规则的物体,求他们的体积,可以用排水法.水面上升或者下降的那部分水的体积就是物体的体积. 第 四 单 元 一、分数的意义 1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示. 2、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示.把什么平均分,什么就是单位“1”. 3、把单位“1”平均分成若干份,表示其中的一份的数叫做分数单位.一个分数的分母越大,分数单位越小;一个分数的分母越小,分数单位越大. 4、分数与除法的关系:分数可以表示整数除法的商;除法里的被除数相当于分数中的分子,除数相当于分数里的分母,出号相当于分数线. =被除数被除数除数除数,=分子分子分母分母. 5、求一个数是另一个数的几分之几的解题方法:用除法计算. =一个数一个数另一个数另一个数在解决问题中,要先找出单位“1”和比较量,一般来说,问题中“是”或“占”的后面是单位“1”,前面的比较量,如果没出现这两个字,要根据题意判断, 再根据公式“1=1比较量比较量单位“”单位“” ”计算. 6、低级单位化高级单位(用分数表示)时,等于低级单位的数值两个单位间的进率,能约分的要约成最简分数. 二、真分数和假分数 1、分子比分母小的分数叫做真分数,真分数小于1; 分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于1或等于1; 由整数部分(不包括0)和真分数合成的分数叫做带分数. 2、假分数化成整数或带分数,要用分子除以分母.当分子是分母的倍数时, 5 能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变. 3、带分数化成假分数,用原来的分母做分母,用分母和整数的乘积再加上原来的分子作分子,用式子表示成:+=分母整数分子带分数分母三、分数的基本性质、约分、通分 1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.可以利用分数的基本性质,对分数进行约分或通分,或者把分母化成指定的分母或分子的分数. 2、两个数公有的因数,叫做它们的公因数.其中最大的公因数叫做它们的最大公因数.当两个数成倍数关系时,较小的数就是他们的最大公因数;当两个数只有公因数1时,它们的最大公因数就是1.(公因数只有1的两个数叫做互质数) 3、求两个数的最大公因数,可以用列举法分别列出这两个数的因数,再寻找公有的因数.也可以用短除法计算. 4、分子和分母只有公因数1的分数叫做最简分数. 把一个分数化成和它相等,但分子分母都比较小的分数叫做约分.约分时可以用分子和分母的公因数(1除外)去除,一步步来约分,也可以直接用最大公因数去除,直接约分. 5、两个数公有的倍数叫做它们的公倍数,其中最小的倍数叫做它们的最小公倍数.一般情况下,求一个数的倍数可以用列举法、图示法、大数翻倍法、短除法.当两个数是倍数关系时,大数就是它们的最小公倍数;互质的两个数的最小公倍数是它们的积. 6、把异分母分数分别化成和原来的分数相等的同分母分数,叫做通分. 四、分数和小数的互化 1、小数化分数的方法 小数化成分数时,小数。

关于5年级数学小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除