小学数学课外常识

2022-05-22 综合 86阅读 投稿:痴情

1.谁给我20篇数学课外知识呀,字少点呀

数学知识 《几何原本》 几 何 原 本 《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。

自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。

除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的。

公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料。希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统。

首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充。到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础。

欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。

《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的。《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识。

第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。该卷的最后两个命题是毕达哥拉斯定理及其逆定理。

这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的。”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了。

第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学。 第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理。

这些定理大多都能在现在的中学数学课本中找到。第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题。

第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一。据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容。

他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来。此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐。

第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理。 第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷。

最后三卷,即第十一、十二和十三卷,论述立体几何。目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到。

《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系。所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题。

《几何原本》成为了两千多年来运用公理化方法的一个绝好典范。 诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值。

它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语。它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝。

哥德巴赫猜想 哥 德 巴 赫 猜 想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。

这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。

实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和。1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题。

但是第一个问题至今仍未解决。由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”。

1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其。

2.课外数学小知识

一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。

二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。

三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。

3.小学数学知识重点

希望对你有帮助,全都是自己打出来的哦小学数学?重点?其实很简单,只要上课听懂重点有三个一个是代数,第二个平面几何和立体几何,第三个是统计与一些杂题。

代数主要包括方程,还有一些数学的基础,例如什么质数合数什么的。特别是方程,要重点复习。

平面几何主要包括小学学的基础图形,还要记住基础概念,例如什么三角形具有稳定形,还要背公式,最总要的一点是灵活灵用。立体几何,这是小学的难点,建议多做题。

统计等,这些都很简单,可以简要看一看1、长方形的周长=(长+宽)*2 C=(a+b)*2 2、正方形的周长=边长*4 C=4a 3、长方形的面积=长*宽 S=ab 4、正方形的面积=边长*边长 S=a.a= a 5、三角形的面积=底*高÷2 S=ah÷2 6、平行四边形的面积=底*高 S=ah 7、梯形的面积=(上底+下底)*高÷2 S=(a+b)h÷2 8、直径=半径*2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率*直径=圆周率*半径*2 c=πd =2πr 10、圆的面积=圆周率*半径*半径 Ѕ=πr 11、长方体的表面积=(长*宽+长*高+宽*高)*2 12、长方体的体积 =长*宽*高 V =abh 13、正方体的表面积=棱长*棱长*6 S =6a 14、正方体的体积=棱长*棱长*棱长 V=a.a.a= a 15、圆柱的侧面积=底面圆的周长*高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积*高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积*高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体 1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 、正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:。

4.小学数学知识大全的内容简介

《小学数学知识大全》 以专题版块建构,19个专题各个击破。各专题选材注重科学性、趣味性和时代性,不仅包含了1~6年级课本上要求掌握的知识点,又有适当拔高,由课内延伸到课外,拓展你的知识面,开阔你的视野。

5.小学六年级数学课外知识有哪些

有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”

正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。

在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时 5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。

如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

解答:

由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。

既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。

这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

6.小学数学知识集锦

小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。

(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。

(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。

(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。

(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所。

7.小学数学知识有哪些

小学数学公式大全,第一部分: 概念。

1,加法交换律:两数相加交换加数的位置,和不变。2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3,乘法交换律:两数相乘,交换因数的位置,积不变。4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)*5=2*5+4*56,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

0除以任何不是0的数都得0。简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8,什么叫方程式 答:含有未知数的等式叫方程式。9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15,分数除以整数(0除外),等于分数乘以这个整数的倒数。

16,真分数:分子比分母小的分数叫做真分数。17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。

假分数大于或等于1。18,带分数:把假分数写成整数和真分数的形式,叫做带分数。

19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。20,一个数除以分数,等于这个数乘以分数的倒数。

21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。

22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:1824,比例的基本性质:在比例里,两外项之积等于两内项之积。

25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:1826,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x*y = k( k一定)或k / x = y28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。33,要学会把小数化成分数和把分数化成小数的化发。

34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个, 叫做最大公约数。)35,互质数: 公约数只有1的两个数,叫做互质数。

36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数)39,最简分数:分子,分母是互质数的分数,叫做最简分数。

40,分数计算到最后,得数必须化成最简分数。41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。

个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

44,质数(素数):一个数,如果只有1和它本身两个约数,。

小学数学课外常识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除