六年级上数学小知识

2022-02-01 综合 86阅读 投稿:南承曜

1.小学六年级上册数学知识归纳(人教版)

建议你去网上搜一下,这几个网址里都有 给你一个样本: 人教版六年级数学上册知识点整理归纳 六年级上册数学知识点 第一单元 位置 1、什么是数对? ——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。 作用:确定一个点的位置。

经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) ( 列 , 行 ) ↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看) 2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。 第二单元 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如: *7表示: 求7个 的和是多少? 或表示: 的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如: * 表示: 求 的 是多少? 9 * 表示: 求9的 是多少? A * 表示: 求a的 是多少? (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数) (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。

a*b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a*b=c,当b 1时,ca (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序: ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。 注:(a±b)÷c=a÷c±b÷c 四、比:两个数相除也叫两个数的比 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比5 2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。 例:12∶20= =12÷20= =0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。 3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。 (1)、用比的前项和后项同时除以它们的最大公约数。

(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。 4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

5、比和除法、分数的区别: 除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算 分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数 比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系 附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

五、分数除法和比的应用 1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙* (15* =9) 2、未知单位“1”的量用除法。

例: 甲是乙。

2.六年级数学基础知识大全

小学数学基础知识整理(一到六年级) 小学一年级 九九乘法口诀表。

学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。

小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积=底*高÷2。

公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)*5=2*5+4*5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面 1、单价*数量=总价 2、单产量*数量=总产量 3、速度*时间=路程 4、工效*时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6) 6、1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米。

1亩=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:18 9、比例。

3.六年级 上 数学 知识点梳理

第一单元位置 (1)用数据表示位置的方法: 先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。

(第几行,第几列) 第二单元分数乘法 (1)分数乘以整数: 整数与分子的乘积作分子,分母不变。(能约分的可以先约分,再计算) (2)分数乘以分数: 用分子乘以分子的积作分子,分母乘以分母的积做分子。

(能约分的可以先约分,再计算) (3)分数乘加、乘减混合运算顺序: Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。 Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。

Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。(4)分数乘法运算定律 ⒈ 交换两个因数的位置,积不变,这叫做乘法交换律。

a*b=b*a ⒉ 先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。 (a*b)*c=a*( b*c) ⒊ 两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

(a+b)*c=a*c+b*c ⒋ 两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。 (a-b)*c=a*c-b*c5.. 25*4=100 125*8=1000 25*8=200 125*4=500(5) 规律(比较大小要用到): 1、一个数(0除外)乘以大于1的数,积大于这个数; 2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。

第一个数 (6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是 第二个数 。(7)求一个数的几倍,一个数*几倍; 求一个数的几分之几是多少,一个数*几分之几。

(8)倒数 概念:乘积是1的两个数互为倒数。强调:①乘积必须是1。

②只能是两个数。③倒数是表示两个数的关系,他不是一个数。

第三单元分数除法 (1)乘法:因数*因数=积 除法:积÷一个因数=另一个因数 (2)分数除法的意义: 分数除法与整数除法一样,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 (3)分数除法的方法: 甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

(4)规律(比较大小要用到): 1、当除数大于1,商小于被除数; 2、当除数小于1(不等于0),商大于被除数; 3、当除数等于1,商等于被除数。(5)“【 】”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的。(6)解决"已知一个数的几分之几是多少,求这个数"的问题: 1》列方程的方法 用方程解应用题格式:1、解。

(写“解”字,打冒号。)1、设。

(设未知数,根据题目设未知数,问什么设什么。)2、找。

(找等量关系)3、列。(根据等量关系列方程,并解方程)4、答。

2》列除法算式 ①分析数量关系。 一个数 * 几/几 = 具体量 单位”1“的量 * 几/几 = 具体量 单位”1“的量 = 具体量 ÷ 几/几 ②列式计算。

(7)比的概念:两个数相除又叫做两个数的比。(8)在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。例如 15 : 10 = 15÷10= 3/2 (比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ 前项 比号 后项 比值 注意:1、根据比与除法、分数的关系,可以理解比的后项不能为0; 2、在体育比赛中出现两队的分是2:0.,1:0等,这只是一种记分的形式,不表示两个数相除的关系。

(9)比的基本性质:比的前项和后项同事乘以或除以相同的数(0除外),比值不变。(10) 根据比的性质可以把比值化成最简整数比。

当一个比的前后项不是整数时,把比的前后项扩大成整数在化成最简整数比。(11)比的应用:前项+后项=总共的份数 总共的具体量 * 前项/总共的份数 = 前项的物体数 总共的具体量 * 后项/总共的份数 = 后项的物体数 前项的物体数 ÷ 前项/总共的份数 = 总共的具体量 后项的物体数 ÷ 后项/总共的物体量 = 总共的具体量 第四单元圆 (1)把一个圆重合对折几次就会出现一些折痕,这些折痕相交于圆中心的一点,这点叫做圆心(固定的点)。

一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(2)在同一个圆里,所有的半径的长度都相等,所有的直径的长度都相等。

(3)在同一个圆里,直径的长度是半径的2倍,半径长度是直径的一半。d=2r r=1/2d (4)圆是轴对称图形。

直径所在的直线是圆的对称轴,圆的对称轴有无数条。(5)任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母 (pai)表示。

它是一个无限不循环小数, =3.1415926535------但在实际应用中一般只取它的近似值,即 =3.14 。如果用C表示圆的周长,就有 C= d 或 C=2 r(6)圆的面积公式:圆的面积 = r*r = r2 强调:①r2 表示r*r 。

②长度单位与面积单位的统一 。 ③计算时,可以不写面积公式。

(7)环形面积:大圆面积 — 小圆面积( 或 外圆面积 — 内圆面积) (8)圆心角:顶点在圆心的角叫做圆心角。圆周角360°。

第五单元百分数 (1)概念:像上面这样的数,如18%、50%、64.2%-----叫做百分数。

4.数学小知识,要六年级的

1、杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。

2、一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。

由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。

每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。

大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。

……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。

课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。

兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。

3、为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。

他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。

康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。

来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。

1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。

1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。

23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。

4、数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”

吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。

他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。

后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答: “我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。

但是,有些数字非记不可,也很容易记住……” 5、苹果树下的例行出步 1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25。

5.人教版六年级上册数学知识点整理

第二单元 分数乘法

一、分数乘法

(一)分数乘法的意义:

1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算

三、倒数

1、倒数的意义: 乘积是1的两个数互为..

倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)

一、分数除法

1、分数除法的意义:

乘法: 因数 * 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数;

(2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。

4、“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

6.数学小知识少一点的六年级上册 的

1.单价*数量=总价 2.单产量*数量=总产量 3.速度*时间=路程 4.工效*时间=工作总量 小学数学定义定理公式(二)

一、算术方面

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)*5=2*5+4*5。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20.一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数

7.关于六年级数学的趣味小知识

用数学写的人生格言:干下去还有50%成功的希望,不干便是100%的失败——王菊珍

一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数值就越小。——托尔斯泰

时间是一个常数,但对勤奋者来说,是一个“变数”。用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍——雷巴柯夫

在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有哪些问题没有解决,需要我们去探索解决。——华罗庚

天才=1%的灵感+99%的血汗。——爱迪生

A=x+y+z

其中A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。——爱因斯坦

8.六年级上册数学知识点

位置:看图 对称轴 (横轴,竖轴) 看例子 分数乘法: 能约分的先约分,再计算。

分数乘分数,应该分子乘分子,分母乘分母。 整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

倒数的认识:乘积是 1的两个数互为倒数。分子分母交换位置,找到一个数的倒数。

分数除法: 除以一个不等于0的数,等于乘这个数的倒数。 比和比的应用: 两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

比值通常用分数表示,也可以用小数或整数表示。 比的后项不可以是0 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

根据比的基本性质,可以把比化成最简单的整数比。 整数可以看成一个特殊的分数,所以不管被除数、除数是整数还是分数,计算方法都是一样的。

除以一个数(0除外),就等于乘以这个数的倒数。 圆: 圆心用O表示。

连接圆心和圆上任意一点的线段叫做半径,一般用r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

在同一个圆内,所有的半径和直径都相等。直径是半径长度的2倍,半径的长度是直径的1/2。

长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

等腰三角形、等腰梯形只有一条对称轴。 长方形有两条对称轴。

等边三角形有三条对称轴。 正方形有四条对称轴。

圆有无数条对称轴。 把圆规的两脚分开,定好两脚尖的距离作为半径。

圆的周长:任意一个圆的周长与它的直径的比是一个固定的数,我们把它叫做圆周率,用字母 pai 表示。它是一个无限不循环小数。

如果用c表示圆的周长 公式: 圆的面积: 把圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的纸片,拼成一个接近长方形、近似平行四边形 圆的面积公式: 一条弧和经过这条弧来暖的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

圆是一种曲线图形, 一个圆的周长等于它的直径乘pai 百分数: 百分数可以看成分母是100的分数,可以直接写成小数。 百分数可以化成最简分数。

除不尽时,通常保留三位小数。 一成是十分之一,改写成百分数就是10%。

三成五就是十分之三点五,改成百分数就是35%(注意大写和小写) 分数应用题: 1、一、读题理解题意,找出单位“1”,二、画出线段图,三、列出等量关系,四、根据等量关系列式解答。 2、比谁,谁就做分母。

3、不好理解的数量关系就用方程。 4、答要写完整,注意写单位名称。

注意分数乘法的意义、分数除法的意义 五、百分数 百分数在生活中应用广泛,所涉及问题基本和分数问题相同,但是要乘100%,%号的写法两个0要小写,不要与百分数前面的数混淆。 百分数与小数分数互化。

百分数化小数,去掉百分号,同时把小数点向左移动两位就可以了。 小数化成百分数,只要把小数点向右移动两位,同时添上百分号。

小数化成分数,移动小数点位置变为整数做分子,分母变成10、100、1000……,再化简。分数化成小数,用除法,除不尽的保留两位小数。

分数化成百分数: 1、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。 2、利用分数除法把分数化成小数,再化成百分数。

除不尽的情况结果保留三位小数三位小数,因此分子除以分母的商要算到小数第四位,四舍五入后,近似商取三位数。百分号前保留一位小数。

这种方法适用范围广。 百分数化成分数,写成分数形式,再约分。

分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。 百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。 一般出粉率在70、80%,出油率在30、40%。

六、统计 条形统计图可以知道每个数量的多少。折现统计图可以知数量的增减,扇形统计图可以知道部分和总量的关系。

七、数学广角 研究中国古代的鸡兔同笼问题。 1、用表格方式解决有局限性,数目必须小,例: 头数 鸡(只)兔(只)腿数 35 1 34 35 2 33 35 3 32 …… (逐一列表法、腿数少小幅度跳跃、腿数多大幅度跳跃、跳跃逐一相结合、取中列表) 2、用假设法解决 (1) 假如都是兔 (2) 假如都是鸡 (3) 假如它们各抬起一条腿 (4) 假如兔子抬起两条前腿 (5)这个问题,是我国古代著名趣题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。

求笼中各有几只鸡和兔? 3、用代数方法解(一般规律) 整数、分数、百分数应用题结构类型 (一)求甲是乙的几倍(或几分之几或百分之几)的应用题。 解法:甲数除以乙数 例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳。

9.六年级上册数学知识点总结

1.用数对表示物体的位置。

2.在方格纸上用数对确定位置。 分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法 例2 分数乘整数的简便算法 分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法 例4 分数乘分数的简便算法 运算定律、简便计算 例5 分数乘法的运算定律 例6 分数混合运算的简便计算 分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法 例2 分数乘整数的简便算法 分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法 例4 分数乘分数的简便算法 运算定律、简便计算 例5 分数乘法的运算定律 例6 分数混合运算的简便计算 例1 倒数的意义 例2 倒数的求法 例1 分数除法的意义 例2 分数除法的计算方法 例3 例4 分数四则混合运算例1 己知一个数的几分之几是多少,求这个数的问题 例2 稍复杂的己知一个数的几分之几是多少,求这个数的问题 第一小节 比的意义 第二小节 例1 比的基本性质 第三小节 例2 比的应用 认识圆 例1 用一般的物体画圆 例2 通过折圆的操作活动认识圆 用圆规画圆 例3 认识圆是轴对称图形 圆的周长 探索圆的周长公式、圆周率 例1 圆的周长的计算 圆的面积 探索圆的面积公式 例1 圆的面积计算 例2 圆形的面积计算。

六年级上数学小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除