数学小知识介绍

2022-07-27 综合 86阅读 投稿:好散

1.数学小知识

1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。

2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。

4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。

5、传说早在四千五百年前,我们的祖先就用刻漏来计时。

6、中国是最早使用四舍五入法进行计算的国家。

7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。

8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。

9、荷兰数学家卢道夫把圆周率推算到了第35位。

10、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

扩展资料

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

参考资料数学_搜狗百科

2.关于数学的小知识

数学小知识

--------------------------------------------------------------------------------

数学符号的起源

数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

例如加号曾经有好几种,现在通用"+"号。

"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。

到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。

乘号曾经用过十几种,现在通用两种。一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。

到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号。他认为"*"是"+"斜起来写,是另一种表示增加的符号。

"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。

1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。

大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造

3.数学趣味小知识 简短的 20到50字左右

趣味数学小知识 数论部分: 1、没有最大的质数。

欧几里得给出了优美而简单的证明。 2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。

陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。 3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。

欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。 拓扑学部分: 1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。 3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操, 摘自:/olpcyanghui.htm

6.小学数学知识大全的介绍

小学数学公式大全, 第一部分: 概念。

1,加法交换律:两数相加交换加数的位置,和不变。 2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3,乘法交换律:两数相乘,交换因数的位置,积不变。 4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(2+4)*5=2*5+4*5 6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

0除以任何不是0的数都得0。 简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8,什么叫方程式 答:含有未知数的等式叫方程式。 9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。 12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15,分数除以整数(0除外),等于分数乘以这个整数的倒数。

16,真分数:分子比分母小的分数叫做真分数。 17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。

假分数大于或等于1。 18,带分数:把假分数写成整数和真分数的形式,叫做带分数。

19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20,一个数除以分数,等于这个数乘以分数的倒数。

21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。

22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 24,比例的基本性质:在比例里,两外项之积等于两内项之积。

25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y 27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x*y = k( k一定)或k / x = y 28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。 29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。 30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 33,要学会把小数化成分数和把分数化成小数的化发。

34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个, 叫做最大公约数。) 35,互质数: 公约数只有1的两个数,叫做互质数。

36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数) 38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数) 39,最简分数:分子,分母是互质数的分数,叫做最简分数。

40,分数计算到最后,得数必须化成最简分数。 41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。

个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

数学小知识介绍

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除