1.关于方程的知识点
代数式:用运算符号(加减乘除)连接起来的字母或者数字. 方程:含有未知数的等式叫方程. 列方程:把两个或几个相等的代数式用等号连起来. 列方程关键问题:用两个以上的不同代数式表示同一个数. 等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变. 移项:把数或式子改变符号后从方程等号的一边移到另一边; 移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号. 加去括号规则:在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理. 移项关键问题:运用等式的性质,移项规则,加、去括号规则. 乘法分配率:a(b+c)=ab+ac 解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解; 方程组:几个二元一次方程组成的一组方程. 解方程组的步骤:①消元;②按一元一次方程步骤. 消元的方法:①加减消元;②代入消元.。
2.和关于方程的相关知识、
1 每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数*因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 长方体 V:体积 s:面积 a:长 b:宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣。
3.方程小知识急需有赏分
是最简单的代数方程,掌握方程根的定义,熟练掌握一元一次方程的解法,是学习方程和方程组的的基础.方程根的定义:能使方程两边值相等的未知数的值叫做方程的解,一元方程的解也叫做方程的根,利用根的定义能转化条件,求出相应的值.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项的系数;bx叫做一次项,b叫做一次项的系数;c叫做常数项.那个2 是平方你应该看得懂的.还有不明白的给我留言吧每个方程都含有 两个未知数,并且未知数的指数都是1,像这样的方程就叫做二元一次方程 把具有相同未知数的两个二元一次方程合在一起,就组成了二元一次方程组 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解(除二元一次方程组) 二元一次方程组的两个方程的公共解叫做二元一次方程组的解 二元一次方程怎样代入法和加减法 代入法 将一个未知数用含另一未知数的式子表示出来,再代入另一方程,进而求的这个二元一次方程组的解 加减法 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.。
4.小学数学解方程100道
3X+5X=48 14X-8X=12 6*5+2X=44
20X-50=50 28+6X=88 32-22X=10
24-3X=3 10X*(5+1)=60 99X=100-X
X+3=18 X-6=12 56-2X=20
4y+2=6 x+32=76 3x+6=18
16+8x=40 2x-8=8 4x-3*9=29
8x-3x=105 x-6*5=42 x+5=7
2x+3=10 12x-9x=9 6x+18=48
56x-50x=30 5x=15 78-5x=28
32y-29=3 5x+5=15 89x-9=80
100-20x=20 55x-25x=60 76y-75=1
23y-23=23 4x-20=0 80y+20=100
53x-90=16 2x+9x=11 12y-12=24
80+5x=100 7x-8=6 65x+35=100
19y+y=40 25-5x=15 79y+y=80
42x+28x=140 3x-1=8 90y-90=90
80y-90=70 78y+2y=160 88-x=80
9-4x=1 20x=40 65y-30=100
51y-y=100 85y+1=-86 45x-50=40x+9x=4+7
2x+9=17
8-4x=6
6x-7=12
7x-9=8
x-56=1
8-7x=1
x-30=12
6x-21=21
6x-3=6
9x=18
4x-18=13
5x+9=11
6-2x=11
x+4+8=23
7x-12=8
X-5.7=2.15
15 5X-2X=18
3X 0.7=5
x+13=33
3 - 5x=80
1.8 +6x=54
6.7x -60.3=6.7
9 +4x =40
2x+8=16
3.5*2= 4.2 x
26*1.5= 2x
0.5*16―16*0.2=4x
9.25-X=0.403
16.9÷X=0.3
X÷0.5=2.6
3-5x=80
1.8-6x=54
6.7x-60.3=6.7
9 +4x=40
0.2x-0.4+0.5=3.7
9.4x-0.4x=16.2
12-4x=20
1/3x+5/6x=1.4
12x+34x=1
18x-14x=12
23 x-5*14=14
12+34x=56
22-14x=12
23x-14x=14
x+14x=65
23x=14x+14
30x12x-14x=1
x-0.7x=3.6
不知够不够
5.跟方程有关的小于20字数学小故事
我们研究许多数学问题时,可以发现其中的未知数不是孤立的,它们与某些已知数之间有一定的联系,这种联系常常表现为一定的等量关系,把这种关系用字母和数字形式写出来就是含有未知数的等式,这种等式的专用名称就是方程。
人们对方程的研究可以追溯到远古时期,大约3600多年前,古埃及人写在纸草书上的数学问题中就涉及了含有未知数的等式。公元825年左右,中亚细亚的数学家阿尔—花拉子米曾写过一本《对消与还原》的书,重点讨论方程的解法,这本书对后来数学的发展产生了很大的影响。
在很长时间内,方程没有专门的表达形式,而是使用一般的语言文字来叙述。17世纪时,法国数学家笛卡尔最早提出了用xy、z这样的字母来表示未知数,把这些字母和普通数字同样看待,用运算符号和等号把字母与数字连接起来,就形成含有未知数的等式。后来经过不断的简化和改进,方程逐渐演变成现在的表达形式,例如6x+8=20,4x-2y=9,x-4=0等。
中国对方程的研究也有着悠久的历史。中国古代数学著作
6.小学所有数学公式,和关于方程的相关知识、
1 每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数*因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3 长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%)。
7.关于数学的小知识
1,零
在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。
2,数字系统
数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。
3,π
π是数学中最著名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。
π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。
4,代数
代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。
但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。
5,函数
莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。
8.关于方程的资料
含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加[或减]同一个数或同一个代数式,所得的结果仍是等式。 用字母表示为:若a=b,c为一个数或一个代数式。
则: 〔1〕a+c=b+c 〔2〕a-c=b-c 等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式。 3若a=b,则b=a(等式的对称性)。
4若a=b,b=c则a=c(等式的传递性)。 【方程的一些概念】 方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。 移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。 整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。 一元一次方程 只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程,通常形式是ax+b=0(a,b为常数,a不等于零)。
1去分母 方程两边同时乘各分母的最小公倍数。 2去括号 一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率。
3移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。 4合并同类项 将原方程化为AX=B[A不等于0]的形式。
5系数化为1 方程两边同时除以未知数的系数,得出方程的解。 同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:1方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 2方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
列一元一次方程解应用题的一般步骤: 1认真审题 2分析已知和未知的量 3找一个等量关系 4解方程 5检验 6写出答,解 二元一次方程 二元一次方程:如果一个方程含有两个未知数,并且未知数的指数是1那么这个整式方程就叫做二元一次方程,有无穷个解。 二元一次方程组:把两个共含有两个未知数的一次方程合在一起就组成一个二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
消元:将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。 消元的方法有两种: 代入消元法 加减消元法 三元一次方程 三元一次方程:含有三个未知数的一次方程。
三元一次方程组:由几个一元一次方程组成并含有三个未知数的方程组叫做三元一次方程组。 三元一次方程组的解:利用消元思想使三元变二元,再变一元。
方程是初等代数中的重要内容,方程的知识在生产实践中有广泛应用。中国古代对方程就有研究。
在《九章算术》中载有“ 方程 ”一章 ,距今已近2000年 ,书中方程是指多元联立一 次方程组 。13 世纪秦九韶首创正负开方术 ,即一元高次方程的数值解法 。
在西方,英国 W.G.霍纳于 1819 年才发现类似的近似方法。14世纪朱世杰对含有四个未知数的高次联立方程组的研究已达到了很高的水平。
一元二次方程 一元二次方程:含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。 一般形式:ax2+bx+C=0(a=/0) 解法:1.公式法(直接开平方法) 2.配方法 3.因式分解法 二元一次方程 二元一次方程:含有两个未知数且未知数的最高次数为1的整式方程叫做二元一次方程。
在平面直角坐标系中,任何关于x、y的二元一次方程都表示一条直线。 二元二次方程:含有两个未知数且未知数的最高次数为2的整式方程。