数学小知识大全五年级,小学一到五年级数学知识重点汇总详细

2022-10-04 综合 86阅读 投稿:浅花芯

1.小学一到五年级数学知识重点汇总(详细)

小学五年级全科目课件教案习题汇总语文数学三 单 元 有两个相对的面是正方形,长方体中相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点. 2、正方体的特征:正方体有6个面,这6个面都是正方形,所有的面完全相同;有12条棱,所有的棱长度相等;有8个顶点. 正方体可以看成是长、宽、高都相等的长方体. 3、相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高. 4、长方体或者正方体的12条棱的总长度叫做他们的棱长总和. 长方体的棱长总和=(长+宽+高)*4, 用字母可以表示为=C长方体(a+b+h)4. 正方体的棱长总和=棱长*12,用字母可以表示为=12aC正方体. 5、长方体或者正方体6个面的总面积叫做它的表面积. 长方体的表面积=(长*宽+长*高+宽*高)*2,用字母表示为=(ab+ah+bh)2S长方体. 正方体的表面积=棱长*棱长*6,用字母表示为2=6aS正方体. 6、物体所占空间的大小叫做物体的体积. 计量体积要用体积单位,常用的体积单元有立方厘米、立方分米、立方米,用字母表示为3cm、3dm、3m.3311000dmcm,3311000mdm. 7、棱长是1 cm的正方体,体积是13cm.一个手指尖的体积大约是13cm. 棱长是1 dm的正方体,体积是13dm.一个粉笔盒的体积大约是13cm. 棱长是1 m的正方体,体积是13m.用3根1 m长的木条,做成一个互成直角的架子架在墙角,它的体积是13cm. 8、长方体的体积=长*宽*高,用字母表示为=abhV长方体. 正方体的体积=棱长*棱长*棱长,用字母表示为3=aV正方体. 长方体和正方体的统一公式:支柱体的体积=底面积*高. 9、容器所能容纳物体的体积,叫做它的容积.计量容积一般就用体积单位,计量液体的体积,常用容积单位升和毫升,用字母表示是L和ml. 4 311Ldm,311mlcm,11000Lml 10、长方体或正方体容器的容积的计算方法,跟体积的计算方法相同.但是要从容器里面量出长、宽、高. 11、形状不规则的物体,求他们的体积,可以用排水法.水面上升或者下降的那部分水的体积就是物体的体积. 第 四 单 元 一、分数的意义 1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示. 2、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示.把什么平均分,什么就是单位“1”. 3、把单位“1”平均分成若干份,表示其中的一份的数叫做分数单位.一个分数的分母越大,分数单位越小;一个分数的分母越小,分数单位越大. 4、分数与除法的关系:分数可以表示整数除法的商;除法里的被除数相当于分数中的分子,除数相当于分数里的分母,出号相当于分数线. =被除数被除数除数除数,=分子分子分母分母. 5、求一个数是另一个数的几分之几的解题方法:用除法计算. =一个数一个数另一个数另一个数在解决问题中,要先找出单位“1”和比较量,一般来说,问题中“是”或“占”的后面是单位“1”,前面的比较量,如果没出现这两个字,要根据题意判断, 再根据公式“1=1比较量比较量单位“”单位“” ”计算. 6、低级单位化高级单位(用分数表示)时,等于低级单位的数值两个单位间的进率,能约分的要约成最简分数. 二、真分数和假分数 1、分子比分母小的分数叫做真分数,真分数小于1; 分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于1或等于1; 由整数部分(不包括0)和真分数合成的分数叫做带分数. 2、假分数化成整数或带分数,要用分子除以分母.当分子是分母的倍数时, 5 能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变. 3、带分数化成假分数,用原来的分母做分母,用分母和整数的乘积再加上原来的分子作分子,用式子表示成:+=分母整数分子带分数分母三、分数的基本性质、约分、通分 1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.可以利用分数的基本性质,对分数进行约分或通分,或者把分母化成指定的分母或分子的分数. 2、两个数公有的因数,叫做它们的公因数.其中最大的公因数叫做它们的最大公因数.当两个数成倍数关系时,较小的数就是他们的最大公因数;当两个数只有公因数1时,它们的最大公因数就是1.(公因数只有1的两个数叫做互质数) 3、求两个数的最大公因数,可以用列举法分别列出这两个数的因数,再寻找公有的因数.也可以用短除法计算. 4、分子和分母只有公因数1的分数叫做最简分数. 把一个分数化成和它相等,但分子分母都比较小的分数叫做约分.约分时可以用分子和分母的公因数(1除外)去除,一步步来约分,也可以直接用最大公因数去除,直接约分. 5、两个数公有的倍数叫做它们的公倍数,其中最小的倍数叫做它们的最小公倍数.一般情况下,求一个数的倍数可以用列举法、图示法、大数翻倍法、短除法.当两个数是倍数关系时,大数就是它们的最小公倍数;互质的两个数的最小公倍数是它们的积. 6、把异分母分数分别化成和原来的分数相等的同分母分数,叫做通分. 四、分数和小数的互化 1、小数化分数的方法 小数化成分数时,小数。

2.【人教版小学数学五年级上册知识点有哪些

小学五年级数学上册复习教学知识点归纳总结第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.如:1.5*3表示1.5的3倍是多少或3个1.5的和的简便运算.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.如:1.5*0.8就是求1.5的十分之八是多少.1.5*1.8就是求1.5的1.8倍是多少.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小.4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.6、(P11)小数四则运算顺序跟整数是一样的.7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)乘法分配律:(a+b)*c=a*c+b*c【(a-b)*c=a*c-b*c】除法:除法性质:a÷b÷c=a÷(b*c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.注意:如果被除数的位数不够,在被除数的末尾用0补足.11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数. 循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.第三单元观察物体15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.第四单元简易方程16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.加号、减号除号以及数与数之间的乘号不能省略.17、a*a可以写作a•a或a ,a 读作a的平方. 2a表示a+a18、方程:含有未知数的等式称为方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫做解方程.19、解方程原理:天平平衡. 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数*因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商*除数 除数=被除数÷商21、所有的方程都是等式,但等式不一定都是等式.22、方程的检验过程:方程左边=…… 23、方程的解是一个数; 解方程式一个计算过程.=方程右边 所以,X=…是方程的解.第五单元多边形的面积23、公式:长方形:周长=(长+宽)*2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)*2 面积=长*宽 字母公式:S=ab 正方形:周长=边长*4 字母公式:C=4a 面积=边长*边长 字母公式:S=a平行四边形的面积=底*高 字母公式: S=ah三角形的面积=底*高÷2 ——【底=面积*2÷高;高=面积*2÷底】 字母公式: S=ah÷2梯形的面积=(上底+下底)*高÷2 字母公式: S=(a+b)h÷2【上底=面积*2÷高-下底,下底=面积*2÷高-上底;高=面积*2÷(上底+下底)】24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,因为长方形面积=长*宽,所以平行四边形面积=底*高. 因为平行四边形面积=底*高,所以三角形面积=底*高÷226、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书两个完全一样的梯形可以拼成一个平行四边形, 知道就。

3.五年级下册全册数学知识整理(写重点)

五年级《数学》下册知识要点一、图形的变换⒈轴对称的意义.如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,那么这个图形就叫做轴对称图形.折痕所在的这条直线叫做对称轴.如果一个图形沿着一条翻折过去,如果它能够与另一个图形重合,那么这两个图形就关于这条直线成轴对称.⒉成轴对称的图形的性质.成轴对称的图形的对应点到对称轴的距离相等.⒊旋转的意义与性质.旋转就是物体围绕着某一个点或某条轴做圆周运动.图形旋转后,大小形状不变,只是位置发生了变化.图形旋转的三要素:绕哪个点旋转、旋转的方向(顺时针还是逆时针)、旋转的度数.二、因数与倍数⒈因数和倍数的意义.如果a*b=c(a、b、c均为不等于0的整数),那么a、b就叫做c的因数,c就叫做a、b的倍数.⒉因数和倍数的关系:因数和倍数是相互依存的.1是所有非零自然数的因数.⒊一个数的因数和倍数的特征.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身.一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数.⒋2、5、3的倍数的特征.个位上是0、2、4、6、8的数,都是2的倍数.在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数.个位上是0或5的数,都是5的倍数.一个数各位上的数字的和是3的倍数,这个数就是3的倍数.个位上是0,且各个数位上的数的和是3的倍数,这样的数同时是2、5、3的倍数.⒌质数和合数的意义.一个数如果只有1和它本身两个因数,那么这样的数就叫做质数(也叫素数).(100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、53、59、61、67、71、73、79、83、89、97)一个数除了1和它本身还有别的因数,那么这样的数就叫做合数.⒍分解质因数的意义.⑴把一个合数写成几个质数相乘的形式,叫做分解质因数.⑵分解质因数的方法⒎自然数分为:奇数、偶数(或分为质数、合数、1)⒏最小的自然数是0,最小的奇数是1,最小的偶数是0,最小的质数是2,最小的合数是4.⒐最小公倍数,最大公因数的特殊情况:⑴两个数中,其中一个数是另一个数的倍数,则两数的最大公因数是小数,最小公倍数是大数.⑵两个只有公因数1的数的最大公因数是1,最小公倍数是两数的乘积.三、长方体和正方体⒈长方体和正方体的特征.长方体有6个面,都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点.相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.习惯上,把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高.正方体有6个面,都是正方形,6个面完全相同;有12条棱,长度都相等;有8个顶点.⒉长方体和正方体的关系.正方体可以看作是长、宽、高都相等的特殊的长方体.⒊长方体和正方体的棱长总和的计算方法.长方体的棱长总和=长*4+宽*4+高*4或=(长+宽+高)*4正方体的棱长总和=棱长*12⒋长方体和正方体的表面积的意义及计算方法.长方体或正方体6个面的总面积,叫做它的表面积.长方体的表面积=长*高*2+长*宽*2+宽*高*2或长方体的表面积=(长*高+长*宽+宽*高)*2 即:S(长方体)=2(ah+ab+bh)正方体的表面积=棱长*棱长*6 即:S(正方体)=6a2⒌体积的含义、常用的体积单位及体积单位间的进率.物体所占空间的大小叫做物体的体积.常用的体积单位有立方米(m3)、立方分米(dm3)和立方厘米(cm3).每相邻两个体积单位之间的进率是1000.即:1立方米=1000立方分米=1000000立方厘米1立方分米(升)=1000立方厘米(毫升)⒍长方体和正方体的体积计算方法.长方体的体积=长*宽*高 即:V(长方体)=abh正方体的体积=棱长*棱长*棱长 即:V(正方体)=a3 长方体或正方体的体积=底面积*高 即:V=Sh⒎容积及容积单位.箱子、油桶、仓库等容器所能容纳物体的体积,叫做它们的容积.计量容积,一般用体积单位,而计量液体的体积则用容积单位升和毫升.长方体或正方体容器容积的计算方法与体积的计算方法相同.四、分数的意义和性质⒈单位“1”的含义.一个物体,一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”.⒉分数及分数单位的意义.把单位“1”平均分成若干份,表示这样的一份或几份的数就叫做分数.把单位“1”平均分成若干份,表示其中一份的数叫做这个分数的分数单位.⒊分数与除法的关系.被除数÷除数=被除数/除数(除数≠0) a÷b=a/b(b≠0)⒋真分数、假分数的意义和特征,以及假分数与整数和带分数互化的方法.分子比分母小的分数叫做真分数.(真分数小于1)分子比分母大或者分子和分母相等的分数,叫做假分数.(假分数大于或者等于1)一个自然数和一个真分数合成的数,叫做带分数.(带分数大于1)把整数(0除外)化成假分数的方法:,用整数(0除外)与指定分母的积作分子,指定的分母(0除外)作分母.把假分数化成整数或带分数的方法:用假分数的分子除以分母,能整除的,则化成整数;不能整除的,则化成带分数,所得的商就是带分数的整数部分,余数是分数部分的分子,分母不变.把带分数化成假。

4.小学数学五年级的知识点有哪些

五年级第一学期数学概念综合1、0既不是正数,也不是负数。

正数都大于0,负数都小于0。通常情况下正、负数表示两种相反关系的量,如果盈利用正数表示,那么亏损就用负数,如果高于海平面用正数表示,那么低于海平面用负数表示。

水沸腾的温度是100℃,水结冰的温度是0℃。2、在数不规则图形的面积时不满一格的看作半格。

先数满格,再数半格。3、长方形的周长=(长+宽)*2 长方形的面积=长*宽 正方形的周长=边长*4 正方形的面积=边长*边长4、沿着平行四边形的任意一条高剪开,然后通过移动拼成一个长方形。

长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积=长*宽,所以平行四边形的面积=底*高,用字母表示S=a*h。

5、将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积等于底*高,所以三角形的面积等于底*高÷2。

用字母表示S=a*h÷2。 等底等高的两个三角形的面积相等。

6、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。

7、将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积=底*高,所以梯形的面积=(上底+下底)*高÷2字母表示S=(a+b)*h÷2.8、分母是10、100、1000……的分数都可以用小数表示。

分母是10的分数写成一位小数,表示十分之几。分母是100的分数写成两位小数,表示百分之几。

分母是1000的分数写成三位小数,表示千分之几。小数点左边第一位是个位,计数单位个(1) 小数点左边第二位是十位,计数单位十(10) 小数点右边第一位是十分位,计数单位十分之一(0.1) 小数点右边第二位是百分位,计数单位百分之一(0.01) 小数点右边第三位是千分位,计数单位千分之一(0.001) 小数部分最高位是十分位,最大的计数单位是十分之一。

相邻两个计数单位之间的进率是10。9、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一)0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。

10、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。11、用“万”作单位:1、在万位后面点上小数点;2、添个“万”字。

用“=”号。用“亿”作单位:1、在亿位后面点上小数点;2、添个“亿”字。

用“=”号。注意:改写不能改变原数的大小。

省略万后面的尾数:要看“千”位,用四舍五入法取近似值。用“≈”号。

省略亿后面的尾数:要看“千万”位,用四舍五入法取近似值。用“≈”号。

保留整数,就是精确到个位,要看小数部分第一位(十分位)。保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)。

保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)。注意:在表示近似值时末尾的“0”一定不能去掉。

例如,一个小数保留两位小数是1、50,末尾的“0”不能去掉。虽然1、50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。

12、计算小数加减法时,要把小数点对齐,也就是相同数位对齐。13、找规律:1、找到周期;2、将个数÷周期;3、余数是几就是第几个。

4、要算每个项目一共有几个,可以分三步去做:(1)每几个为一组;(2)每组中有几个;再乘一共有组数(3)最后加上余数中的个数就等于一共有多少个。14、解决问题中的策略:用一一列举法将可能的情况用列表法全部列举出来,列举时的技巧是先考虑数字较大的(放在第一行)。

15、在计算小数乘法时(1)算:按照整数乘法的法则进行计算;(2)看:两个因数中一共有几位小数(3)数:就从积的末尾起数出几位;(4)点:点上小数点;(5)去:去掉小数末尾的0。16、一个小数乘10、100、1000……只要把小数点向右移动一位、两位、三位…… 一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……17、1平方千米就是边长1000米的正方形的面积,等于1000000平方米。

1公顷就是边长100米的正方形的面积,等于10000平方米。 1平方千米=100公顷。

1公顷=100公亩=10000平方米18、整数加、减、乘、除法的运算定律对于小数也同样适用。加法交换律:a+b=b+a 加法结合律:(a+b)+c= a +(b+c) 乘法交换律:a*b=b*a 加法结合律:(a*b)*c= a *(b*c) 减法的性质:a―b―c = a―(b+c) 除法的性质:a÷b÷c = a÷(b*c)19、除数是小数的除法,首先看除数一共有几位小数,然后就根。

5.小学五年级数学知识点

小学五年级数学上册期末复习知识点归纳 第一单元小数乘法 1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5*3表示1.5的3倍是多少或3个1.5的和的简便运算。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。 如:1.5*0.8就是求1.5的十分之八是多少。

1.5*1.8就是求1.5的1.8倍是多少。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。 3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10) ⑴四舍五入法;⑵进一法;⑶去尾法 5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。 7、运算定律和性质: 加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)乘法分配律:(a+b)*c=a*c+b*c【(a-b)*c=a*c-b*c】 除法:除法性质:a÷b÷c=a÷(b*c) 第二单元小数除法 8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。 9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。

商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。 10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。 11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。 13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32. 14、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。 第三单元观察物体 15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

第四单元简易方程 16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。 加号、减号除号以及数与数之间的乘号不能省略。

17、a*a可以写作a•a或a ,a 读作a的平方。 2a表示a+a 18、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数*因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商*除数 除数=被除数÷商 21、所有的方程都是等式,但等式不一定都是等式。 22、方程的检验过程:方程左边=…… 23、方程的解是一个数; =…… 解方程式一个计算过程。

=方程右边 所以,X=…是方程的解。 第五单元多边形的面积 23、公式:长方形:周长=(长+宽)*2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)*2 面积=长*宽 字母公式:S=ab 正方形:周长=边长*4 字母公式:C=4a 面积=边长*边长 字母公式:S=a 平行四边形的面积=底*高 字母公式: S=ah 三角形的面积=底*高÷2 ——【底=面积*2÷高;高=面积*2÷底】 字母公式: S=ah÷2 梯形的面积=(上底+下底)*高÷2 字母公式: S=(a+b)h÷2 ——【上底=面积*2÷高-下底,下底=面积*2÷高-上底;高=面积*2÷(上底+下底)】 24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形, 长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底; 长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高; 长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍, 因为长方形面积=长*宽,所以平行四边形面积=底*高。

因为平行四边形面积=底*高,所以三角形面积=底*高÷2 26、梯形面积公式推导:旋。

6.小学数学5个小知识

常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 ) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。

2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整。

7.5年级的数学小知识

O”的自述 人人都轻视我,认为我可有可无、有时读数不读我,有时计算中一笔把我划掉。

可你们知道吗?我也有许多实实在在的意义。 1.我表示“没有”。

在数物体时,如果没有任何物体可数,就要用我来表示。 2.我有占数位的作用。

记数时,如果数的某一数位上一个单位也没有,就用我来占位。比如:1080中百位、个位上一个单位也没有就用:0来占位。

3.我表示起点。直尺、秤的起点都是用我来表示的。

4.我表示界限。温度计上,我的上边叫“零上”,我的下边叫“零下”。

5.我可以表示不同的精确度。在近似计算中,小数部分末尾的我可不能随便划去。

如:7.00、7.0、7的精确度是不同的。 6.我不能做除数。

让我做除数可就麻烦了,因为我做除数是没有意义的。 以后你们还会学到我的很多特殊性质、小朋友,请你不要看不起我。

为什么电子计算机要用二进位制 由于人的双手有十个手指,人类发明了十进位制记数法。然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻。

究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的记数方法又是什么呢? 这要从计算机的工作原理说起。计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电。

计算机信息存储常用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化。近年来用光盘记录信息的做法也越来越普遍,光盘上海一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用。

由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费。因此,十进位制不适合于作为计算机工作的数字进位制。

那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制。 二进位制所需要的记数的基本符号只要两个,即0和1。

可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点。总之,二进位制的一个数位正好对应计算机介质的一个信息记录点。

用计算机科学的语言,二进位制的一个数位称为一个比特(bit),8个比特称为一个字节(byte)。 二进位制在计算机内部使用是再自然不过的。

但在人机交流上,二进位制有致命的弱点——数字的书写特别冗长。例如,十进位制的100000写成二进位制成为11000011010100000。

为了解决这个问题,在计算机的理论和应用中还使用两种辅助的进位制——八进位制和十六进位制。二进位制的三个数位正好记为八进位制的一个数位,这样,数字长度就只有二进位制的三分之一,与十进位制记的数长度相差不多。

例如,十进位制的100000写成八进位制就是303240。十六进位制的一个数位可以代表二进位制的四个数位,这样,一个字节正好是十六进位制的两个数位。

十六进位制要求使用十六个不同的符号,除了0—9十个符号外,常用A、B、C、D、E、F六个符号分别代表(十进位制的)10、11、12、13、14、15。这样,十进位制的100000写成十六进位制就是186A0。

二进位制和八进位制、二进位制和十六进位制之间的换算都十分简便,而采用八进位制和十六进位制又避免了数字冗长带来的不便,所以八进位制、十六进位制已成为人机交流中常用的记数法。为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。

可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。

譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。

时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。

譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“〃”来表示。时间和角度都用分、秒作小数单位。

这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。

这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。长度单位的自述 一天,长度单位的弟兄们到一起开会,主持会议的是“公里”老大哥,它首先发了言:“我们长度等单位是个国际大家庭,今天来参加会的是我们大家庭中的少数派,人们对我们非常生疏,因此,我们先作一下自我介绍。”

首先从会场中央站起来一个说道:“我叫‘引’,是中。

数学小知识大全五年级

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除