陶小乐数学知识,初一上册数学知识点概括

2022-09-26 综合 86阅读 投稿:琼诗

1.初一上册数学知识点概括

初一上册数学知识点 第一章 有理数 1正数、负数、有理数、相反数、科学记数法、近似数 2数轴:用数轴来表示数 3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零 4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。

5有理数的加法法则: 同号两数相加,取相同的符号,并把绝对值相加; 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值; 互为相反数的两数相加为零; 一个数加上零,仍得这个数。 6有理数的减法(把减法转换为加法) 减去一个数,等于加上这个数的相反数。

7有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同零相乘,都得零。 乘积是一的两个数互为倒数。

8有理数的除法(转换为乘法) 除以一个不为零的数,等于乘这个数的倒数。 9有理数的乘方 正数的任何次幂都是正数; 零的任何次幂都是负数; 负数的奇次幂是负数,负数的偶次幂是正数。

10混合运算顺序 (1) 先乘方,再乘除,最后加减; (2) 同级运算,从左到右进行; (3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。 第二章 整式的加减 1 整式:单项式和多项式的统称; 2整式的加减 (1) 合并同类项 (2) 去括号 第三章 一元一次方程 1 一元一次方程的认识 2 等式的性质 等式两边加上或减去同一个数或者式子,结果仍然相等; 等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

3 解一元一次方程 一般步骤:去分母、去括号、移项、合并同类项、系数化为一 第四章 图形认识初步 1 几何图形:平面图和立体图 2 点、线、面、体 3 直线、射线、线段 两点确定一条直线; 两点之间,线段最短 4 角 角的度量度数 角的比较和运算 补角和余角:等角的补角和余角相等。

2.苏教版六年级数学知识点总结

小学数学复习考试知识点汇总 一、小学生数学法则知识归类 (一)笔算两位数加法,要记三条 1、相同数位对齐; 2、从个位加起; 3、个位满10向十位进1。

(二)笔算两位数减法,要记三条 1、相同数位对齐; 2、从个位减起; 3、个位不够减从十位退1,在个位加10再减。 (三)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算式里有括号的要先算括号里面的。

(四)四位数的读法 1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; 2、中间有一个0或两个0只读一个“零”; 3、末位不管有几个0都不读。 (五)四位数写法 1、从高位起,按照顺序写; 2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条 1、相同数位对齐; 2、从个位减起; 3、哪一位数不够减,从前位退1,在本位加10再减。 (七)一位数乘多位数乘法法则 1、从个位起,用一位数依次乘多位数中的每一位数; 2、哪一位上乘得。

小学数学复习考试知识点汇总 一、小学生数学法则知识归类 (一)笔算两位数加法,要记三条 1、相同数位对齐; 2、从个位加起; 3、个位满10向十位进1。 (二)笔算两位数减法,要记三条 1、相同数位对齐; 2、从个位减起; 3、个位不够减从十位退1,在个位加10再减。

(三)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算式里有括号的要先算括号里面的。 (四)四位数的读法 1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; 2、中间有一个0或两个0只读一个“零”; 3、末位不管有几个0都不读。

(五)四位数写法 1、从高位起,按照顺序写; 2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。 (六)四位数减法也要注意三条 1、相同数位对齐; 2、从个位减起; 3、哪一位数不够减,从前位退1,在本位加10再减。

(七)一位数乘多位数乘法法则 1、从个位起,用一位数依次乘多位数中的每一位数; 2、哪一位上乘得的积满几十就向前进几。 (八)除数是一位数的除法法则 1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数; 2、除数除到哪一位,就把商写在那一位上面; 3、每求出一位商,余下的数必须比除数小。

(九)一个因数是两位数的乘法法则 1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐; 2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐; 3、然后把两次乘得的数加起来。 (十)除数是两位数的除法法则 1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小, 2、除到被除数的哪一位就在哪一位上面写商; 3、每求出一位商,余下的数必须比除数小。

(十一)万级数的读法法则 1、先读万级,再读个级; 2、万级的数要按个级的读法来读,再在后面加上一个“万”字; 3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。 (十二)多位数的读法法则 1、从高位起,一级一级往下读; 2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字; 3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

(十三)小数大小的比较 比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。 (十四)小数加减法计算法则 计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

(十五)小数乘法的计算法则 计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。 (十六)除数是整数除法的法则 除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

(十七)除数是小数的除法运算法则 除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。 (十八)解答应用题步骤 1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数; 3、进行检验,写出答案。

(十九)列方程解应用题的一般步骤 1、弄清题意,找出未知数,并用X表示; 2、找出应用题中数量之间的相等关系,列方程; 3、解方程; 4、检验、写出。

3.高一必修数学知识点

去百度文库,查看完整内容>

内容来自用户:颜晓梅

高一数学必修1各章知识点总结

第一章集合与函数概念

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N*或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0} B={-1,1}例题:(7)如果对于区间9注意:指数函数的底数的取值范围,底数不能是负数、零和(

4.七年级上册数学知识点归纳

七年级(上)数学知识点归纳与总结 一、知识梳理 知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。

它们都是比0小的数。0既不是正数也不是负数。

我们可以用正数与负数表示具有相反意义的量。 知识点2:有理数的概念和分类:整数和分数统称有理数。

有理数的分类主要有两种: 注:有限小数和无限循环小数都可看作分数。 知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念: (1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|; (2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。 注:任何一个数的绝对值均大于或等于0(即非负数). 知识点5:相反数的概念: (1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数; (2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。

0的相反数是0。 知识点6:有理数大小的比较: 有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。 用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7:有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 知识点8:有理数加法运算律: 加法交换律:两个数相加,交换加数的位置,和不变。 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。 知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

知识点11: 乘法与除法 1.乘法法则 2.除法法则 3.多个非零的数相乘除最后结果符号如何确定 知识点12:倒数 1. 倒数概念 2. 如何求一个数的倒数?(注意与相反数的区别) 知识点13:乘方 1. 乘方的概念,乘方的结果叫什么? 2. 认识底数,指数 3. 正数的任何次幂是_________,零的任何次幂________ 负数的偶次幂是_________奇次幂是________ 知识点14:混合计算 注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算. 知识点15:科学记数法 科学记数法的概念? 注意a的范围。

5.六年级数学所有知识点

【小学数学图形计算公式】

1、正方形(C:周长, S:面积, a:边长)

周长=边长*4; C=4a

面积=边长*边长; S=a*a

2、正方体(V:体积, a:棱长)

表面积=棱长*棱长*6; S表=a*a*6

体积=棱长*棱长*棱长; V= a*a*a

3、长方形(C:周长, S:面积, a:边长, b:宽 )

周长=(长+宽)*2; C=2(a+b)

面积=长*宽; S=a*b

4、长方体(V:体积, S:面积, a:长, b:宽, h:高)

(1)表面积=(长*宽+长*高+宽*高)*2; S=2(ab+ah+bh)

(2)体积=长*宽*高; V=abh

5、三角形(S:面积, a:底, h:高)

面积=底*高÷2 ; S=ah÷2

三角形的高=面积*2÷底 三角形的底=面积*2÷高

6、平行四边形(S:面积, a:底, h:高)

面积=底*高; S=ah

6.我们能不能探讨孙维刚老师的中学数学解题四大规律,十五个中规律,

前言:在我从教的十几年教学生涯中,曾经试图去探求一种理想的教育模式,近年来,也曾费尽心机去解读多个名师或一些所谓名校的课堂教学模式,但天性驽钝,一直有种种困难迷惑着我,直到看到了孙维刚老师的“一题多解(达到熟悉)、多解归一(寻求共性)、多题归一(寻求规律)”后仿佛豁然开朗,我所追求的不正是孙维刚老师很早就在倡导的吗?一、德育只是为了高效形成想要达成的环境服务而已。

“德育的成功,将有力地促进开发智育的进程;而德育的苍白或紊乱,将滞误智育工作顺利地进行”(孙维刚语) 孙维刚怎样教数学?他说:“八方联系,浑然一体,漫江碧透,鱼翔浅底。” 二、一题多解(达到熟悉)、多解归一(寻求共性)、多题归一(寻求规律) 孙维刚训练学生,一要“敢”提问题;二要“会”提问题;三是在发现问题后,找出此知识与彼知识间的相互联系。

别人要花一个月,他们仅用三个半天便讲完了高中数学的118个公式。初中三年便提前学完了高中的全部数学课程,而且还增加了许多课本上没有的内容和部分大学的数学课程。

初二上到一半,便可以优异的成绩答完前一年的高考数学试卷。 而孙维刚学生的成绩,总是和“付出”之间有一道“不等式”:课前不用预习,课上没有笔记,课后没有作业。

孙维刚到底靠什么呢? 他说:“我给学生出一道题,自己要先做10道题,从中选出最精彩、最典型、最能启发学生思维的。” 在孙维刚的书橱里,记者找到了一摞大硬皮本。

数数共有二十二个(但这只是其中一部分)。上面画着三角、圆锥等各种几何图形,旁边则是密密麻麻的解题笔记。

他为学生开创了解题的“三级跳”:一题多解(达到熟悉)、多解归一(寻求共性)、多题归一(寻求规律);又是他为学生归纳了4个大规律,15个中规律,30多个小规律,使他们从初一到高三,从代数到几何,再没有不会做的题目了。三、在可见的系统中学习,知道自己还缺什么,知道自己已拥有什么。

达到知己知彼。 魏书生认为,教学中首先应当帮助学生解决“学什么”的问题。

为此,他与学生多次讨论、商量,画出了语文学科的知识结构图,整理成了支干、小杈、叶子的系统,即所谓“语文知识树”,或叫“知识地图”。这样做就能使学生“当思维的车在知识的原野上奔驰时.有了这张‘地图’,目标才能明确,少走冤枉路”。

孙维刚则把站在系统的高度教学知识分成了三层意思:一、每个数学概念、定理、公式等知识的传输,都是在见树木更见森林、见森林才见树木的状况下进行的;二、在教学过程中,对任何细节都鼓励学生追根溯源,凡事都去问为什么,寻找它与其它事物之间的联系;三、在系统中进行教学。孙维刚认为这种做法所起到的作用是:“使学生发现知识之间盘根错节,又浑然一体,而到后来,知识好像在手心里,了如指掌,不再是一堆杂乱无章的瓦砾、一片望而生畏的戈壁滩。”

四、教给学生学习方法 魏书生培养自学能力的做法是:第一,提高学生对培养自学能力的认识;第二,教给学生学语文的方法:如怎样读一本语文书,怎样读一篇文章,怎样提高语文学习效率,怎样制定语文学习计划等;第三,引导学生持之以恒地坚持自学计划,并制定了科学的管理系统加以落实。第四,为了进一步提高学生的自学能力,他把传统教学中教师干的一些事也交给了学生去做:教会了学生怎样留作业,怎样批改作业,怎样出考卷。

孙维刚在每届6年的数学教学中:第一,几乎每道例题、每个定理、每个公式都是引导学生自己动手完成的。第二,在课堂上要创造条件,造成学生总是想在老师前面、向老师(包括课本)挑战的氛围,让学生在思维运动中训练思维。

让一个个学生到前面来讲,促进了学生之间聪明才智的相互传染。第三,从数学学科特点出发,在知识上指导学生注意追根究底,寻找知识之间的联系和规律,在比较中学习新知识,站在哲理的高度思考问题,注重联想。

第四,在解题中指导学生一题多解,多题归一,多解归一,归纳共性,分离个性,并总结出了一套科学有效的解题规律。第五,提倡和指导学生开展问题研究,练习写论文、写总结。

第六,不能忽视回顾总结工作,学生完成作业后,要回顾、总结、反思,只有掩卷反思才会有所发现和优化。第七,世上不存在没有“为什么”的事物,凡事需问“所以然”o知其然,更知其所以然,凡事都要问一个为什么。

鼓励学生勇于探索大胆创新,各抒己见,展开争论。孙老师认为:老师给学生讲题,如果只把题目的解法过程一步一步讲清楚,哪怕再细致明白,而讲不出这些解法步骤是怎么想出来的,对提高学生的解题能力,效果是不大的,甚至起消极作用。

要讲清楚自己当时的心绪和想法,在笨拙中学会反思,学会提出问题解决问题。五、编写出"结构教学"教材 六、其它 孙维刚说,知识本身并不重要,通过数学教学,让学生追问数学上的为什么,养成科学的思维习惯才是最重要的。

知识都是相互联系的,课堂上老师常会重复以前的知识,这时候学生应努力找到新旧知识的联系,这样学习数学就变得简单而有趣了。 在他的课上,基本上是先出题,写出公式,然后。

7.七年级数学知识点

七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章 有理数 一、知识框架 二.知识概念 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ② 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 ”“≤ ”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。

7.定理与性质 不等式的性质: 不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

第十章 数据的收集、整理与描述 一.知识框架 全面调查 抽样调查 收集数据 描述数据 整理数据 分析数据 得出结论 二.知识概念 1.全面调查:考察全体对象的调查方式叫做全面调查。 2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。 4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。 6.样本容量:样本中个体的数目称为样本容量。

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。 8.频率:频数与数据总数的比为频率。

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。 本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

8.高二数学知识点整理

一、集合、简易逻辑(14课时,8个) 1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件. 二、函数(30课时,12个) 1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例. 三、数列(12课时,5个) 1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式. 四、三角函数(46课时17个) 1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式' 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质; 10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例. 五、平面向量(12课时,8个) 1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移. 六、不等式(22课时,5个) 1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式. 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念; 10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程. 八、圆锥曲线(18课时,7个) 1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质. 九、(B)直线、平面、简单何体(36课时,28个) 1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球. 十、排列、组合、二项式定理(18课时,8个) 1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式' 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质. 十一、概率(12课时,5个) 1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验. 选修Ⅱ(24个) 十二、概率与统计(14课时,6个) 1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归. 十三、极限(12课时,6个) 1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性. 十四、导数(18课时,8个) 1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值. 十五、复数(4课时,4个) 1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法 答案补充 高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查. 现在的我们学数学比前人幸福啊!! 最后,我建议你经常上这个网站啦,.cn ,相信对你的学习会有帮助的,祝你成功! 答案补充 一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。

几何不等式。 简单的等周问题。

了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。

在面。

陶小乐数学知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除