6年级数学小知识手抄报内容

2022-07-14 综合 86阅读 投稿:冷眸

1.六年级数学手抄报内容

其实自己写就好。

比如说试题精解就可以参照笔记或课外书,与数学有关的知识问答可以参照书上,我找了一个关于圆的故事,望采纳圆的故事有一个圆缺了一角,很不快乐,于是它动身去寻找所缺的一角.他一路向前滚一路唱“我要去寻找失去的一角“,他忍受着日晒,经受着寒冷,被冰雪冰冻,又被太阳温暖。由于缺了一角,他没法滚得太快,他有时候停下来和小虫说话,或是闻闻花的芳香,最快乐的是他一起喝蝴蝶嬉戏的时光。

他度过海洋,穿越沼泽和湖泊,翻阅丘陵和高山。总于有一天,他遇上了最合适的一角,总算找到了,他感觉真好。

他把一角装上,成了一个完美的圆。他一路高兴地唱”我找到了我时候的一角”。

因为不再缺少什么,他越滚越快,快得停不下来和小虫说话,听不下来闻闻花香,停不下来和蝴蝶嬉戏,最后他再也不能唱歌了。他开始明白了什么,停了下来,卸下那一角轻轻放下,从容的走开,又开始一路的歌唱"我要去寻找失去的一角" 。

2.六年级数学小报资料或内容

古典数学之著名数学家陈晨(生于公元250年左右)、李晟( 公元429年生)、祖冲之(公元429年生)、祖暅(祖冲之之子)、张丘建(北魏人)、秦九韶(1208年生)、郭守敬(1231年生)、朱世杰(1 杨辉三角249年生)、贾宪(北宋人)、杨辉(南宋时期)、赵爽(东汉末至三国时代吴国人)、王恂(1235年生)、徐光启(1562年生)、梅文鼎(1633年生)、薛凤柞、阮元(1764年生)、李善兰(1811年生)、李煌(1977年生) “聪明在于勤奋,天才在于积累”————华罗庚 “干下去还有50%成功的希望,不干便是100%的失败。”

————王菊珍 “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”

----托尔斯泰 “数学的本质在於它的自由。”———— 康托(Cantor) “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要。”

————康托(Cantor) “没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明。”————希尔伯特(Hilbert) “数学是无穷的科学。”

————赫尔曼外尔 “问题是数学的心脏。”————P.R.哈尔莫斯 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡。”

————Hilbert “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深。”———— 卡尔·弗里德里希·高斯 “时间是个常数,但对勤奋者来说,是个‘变数’。

用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ————雷巴柯夫 “在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”

————华罗庚 “天才=2%的灵感+98%的血汗。”————托马斯·阿尔瓦·爱迪生(有些版本是“天才=1%的灵感+99%的血汗。”

) “要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ————季米特洛夫 “近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。

并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----阿尔伯特·爱因斯坦 “数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来, 但证明却隐藏的极深。

数学是科学之王。” --——高斯 “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要。”

----康托尔 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡。” ----希尔伯特 “在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。”

----毕达哥拉斯 “一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。” ----卡尔·海因里希·马克思 “一个国家的科学水平可以用它消耗的数学来度量。”

----拉奥 “数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗 “在奥林匹斯山上统治著的上帝,乃是永恒的数。”

----雅可比 “如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采 “不懂几何者免进。”

----柏拉图 “几何无王者之道!” ---- 欧几里得 “数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯 “没有大胆的猜测,就做不出伟大的发现。”

---- 艾萨克·牛顿 “数统治着宇宙。”----毕达哥拉斯 “数学,科学的女皇;数论,数学的女皇。”

----卡尔·弗里德里希·高斯 “上帝创造了整数,所有其余的数都是人造的。” ----克隆内克 “上帝是一位算术家” ----雅克比 “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”

----维尔斯特拉斯 “纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海 “可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”

----麦克斯韦 “数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯 “无限!再也没有其他问题如此深刻地打动过人类的心灵。”

----希尔伯特 “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文 “宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”

----京斯 “这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----A?N?怀德海 “给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”

----柯西 “纯数学是魔术家真正的魔杖。”----诺瓦列斯 “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”

----柏拉图 “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫 “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”

----A.埃博 “生命只为两件事,发展数学与。

3.六年级数学手抄报内容

1、数学格言:

1、数学是无穷的科学. ——外尔(Weil)

2、问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )

3、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )

4、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.——高斯 (Gauss)

5、数学是科学的皇后,而数论是数学的皇后 ——高斯(Gauss)

6、数学比喻: 古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天。他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习"。

7、把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义

8、不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点。

9、会用数学公式,并不说明你会数学。

10、如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好!

2、数学故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+ 。.. +97+98+99+100 = ?

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:

1+2+3+4+ 。.. +96+97+98+99+100

100+99+98+97+96+ 。.. +4+3+2+1

=101+101+101+ 。.. +101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

3、数学小问题:

(1)在下题数字之间分别添上合适的运算符号。

1()2()3()4=1

1()2()3()4()5=1

1()2()3()4()5()6=1

1()2()3()4()5()6()7=1

1()2()3()4()5()6()7()8() =1

(2)改正一个错的符号。

1+2+3+4+5+6+7+8+9=44

1+2+3+4+5+6+7+8+9=50

1+2+3+4+5+6+7+8+9=86

1+2+3+4+5+6+7+8+9=39

1+2+3+4+5+6+7+8+9=31

4.六年级数学手抄报的内容

1画些关于科技的图2有一位老人,他有三个儿子和十七匹马。

他在临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。” 老人去世后,三兄弟看到了遗嘱。

遗嘱上写着:“我把十七匹马全都留给我的三个儿子。长子得一半,次子得三分之一,给幼子九分之一。

不许流血,不许杀马。你们必须遵从父亲的遗愿!” 这三个兄弟迷惑不解。

尽管他们在学校里学习成绩都不错,可是他们还是不会用17除以2、用17除以3、用17除以9,又不让马流血。于是他们就去请教当地一位公认的智者。

这位智者看了遗嘱以后说:“我借给你们一匹马,去按你们父亲的遗愿分吧!” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”

这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。

而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。

一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。

从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。

105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。

0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。

作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。3写些经典例题 4外加些数学家的故事 例如 数学家高斯的故事 高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。

他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。

七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。

同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。

经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。

数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。

隔年,高斯进入Braunschweig学院。这年,高斯十五岁。

在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。

最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m*3n*5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。

但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k * (几个不同「费马质数」的乘积),k = 0,1,2。

5.六年级数学手抄报内容

我把六上的一部分给你吧。

分数乘法

分数乘法的意义:分数乘整数与整数乘法的意义相同,也是求几个相同加数和的简便运算。 分数乘法的法则:分数与整数相乘,用分数的分子和整数相乘的积做分子,分母不变。能约分的可以先约分,再计算。分数乘分数,应该分子乘分子,分母乘分母。 乘法的三个类型:○1求几个相同加数的和是多少。○2求一个数的几倍是多少。○ 3求一个数的几分之几是多少。 一个非0的数乘以比1大的数,积比原来的数大。 一个非0的数乘以1,积不变。 一个非0的数乘以比1小的数,积比原来的数小。 分数混合运算的顺序和整数运算的顺序相同。 整数乘法的交换律、结合律、分配律,对于分数成法也适用。 单位“1”*分率=分率所对应的数量 单位“1”在是的后面 解分数乘法应用题的步骤1画出关键句2找单位“1”3画图4列式 乘积式1的两个数互为倒数。1的倒数是1,0没有倒数

圆是平面上的一种曲线图形。 折痕相交于圆中心的一点,这一点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。 一个圆里有无数条直径与半径。在同一个圆里,半径的长度是直径的一半。 直径是圆中最长的线段。 任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母∏表示。它是一个无限不循环小数,∏=3.1415926535…….但在实际应用中一般只取它的近似值,即∏≈3.14. 圆的周长公式:C=∏d或c=2∏r 把圆分成若干(偶数)等份,分的份数越多,拼成的图形就会越接近长方形。 圆的面积公式:S=∏r 圆环是一个空心的同心圆。 圆环的面积公式:∏(R –r ) R-r=环宽 平方差≠差平方 对角线 /2=S正 在周长相等的情况下,S圆>S正方形>S>长方形 在一个圆中画一个最大的正方形,正方形的面积是圆的一百五十七分之一百。 (2:∏)(100:157) 在一个正方形中画一个最大的圆,正方形和圆的比是4:∏。(200:157)

百分数

百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。 百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。 百分数和分数在意义上的不同:百分数表示一个数是另一个数的百分之几,指的是两个数的 一种关系,分数不仅表示一个数是另一个数的百分之几,也可以表示具体的数量。 小数化百分数:把小数点往右移动两位,同时添上百分号。百分数化小数:去掉百分号,小 数点同时向左移动两位。

6.求六年级上册数学手抄报资料

数学家华罗庚的故事数学家华罗庚少年时失学在家,帮爸爸经营小棉花店。

空闲时,他常常用包棉花的纸解答数学题。一天,爸爸让他去内屋打扫,打扫完毕,回到柜台一看,哭了:“我的算术草稿纸呢?”爸爸左找右找,忽然,他指着远处一个人的背影说:“我把棉花包卖给他了”。

华罗庚追上他,敬了个礼,掏出笔,把题抄道手背上。过路人说:“这真是个怪孩子。”

有时顾客来买东西,人家问东他答西,耽误了生意。晚上,店关门了,他就自学到深夜。

父亲眼见他不把心思化在买卖上,一气之下夺过他手中的书,要仍进火炉,幸亏母亲抢了下来,才没把书烧掉。一次,华罗庚看杂志,发现一篇数学论文有错误,在老师的鼓励下,他写出批评论文,寄给了上海《科学》杂志,不久登了出来。

这篇文章改变了他的道路,使他迈向数学殿堂。

7.六年级数学手抄报内容啊,学习方法,解题思路,趣味题等等

数学趣味小故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。

.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。

.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!1画些关于科技的图2有一位老人,他有三个儿子和十七匹马。

他在临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。” 老人去世后,三兄弟看到了遗嘱。

遗嘱上写着:“我把十七匹马全都留给我的三个儿子。长子得一半,次子得三分之一,给幼子九分之一。

不许流血,不许杀马。你们必须遵从父亲的遗愿!” 这三个兄弟迷惑不解。

尽管他们在学校里学习成绩都不错,可是他们还是不会用17除以2、用17除以3、用17除以9,又不让马流血。于是他们就去请教当地一位公认的智者。

这位智者看了遗嘱以后说:“我借给你们一匹马,去按你们父亲的遗愿分吧!” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”

这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。

而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。

一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。

从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。

105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。

0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。

作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。3写些经典例题 4外加些数学家的故事 1、n = 2k,k = 2, 3,… 2、n = 2k * (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。

像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。

阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。

8.六年级数学手抄报资料~

最低0.27元开通文库会员,查看完整内容> 原发布者:窃租G4659 数学小笑话:买汤从前,有个土财主从来没出过门。

一天,他带了一些钱和一些吃的东西自己上了街,逛了半天,感觉非常饿,于是就吃了一些东西,可又感觉特别渴,便走进了一家汤店。他找了一个位子坐下,然后大声叫道:“小二,来碗鸡汤。”

小二听了很快就端上了一碗香喷喷、热乎乎的鸡汤,并且对土财主说:“每碗十二文。”土财主冲着小二瞪大了眼睛,“我有的是钱!”随即摸了摸自己的口袋,这时土财主呆住了,袋子有个洞,他急忙把口袋翻了翻,还好还有十文钱,可这帐怎么算呢?突然,他又大口大口的喝起来,直到碗里还有一些。

这时小二也走过来了,说:“付钱。”土财主甩出了十文钱,小二一看急了,说:“我刚刚不说了,一碗汤十二文,你怎么给十文呢?”土财主又冲着他说:“我的汤都喝了嘛,没有,我只喝了十二分之十,一碗汤十二文,所以我给你十文呀!”说着,土财主拍着屁股走出了汤店,小二还傻呼呼的站在那儿想呢。

差别在哪方老师在数学课上问阿细:“一半和十六分之八有何分别?”阿细没有回答。方老师说:“想一想,如果要你选择半个橙和八块十六分之一的橙子,你要哪一样?”阿细:“我一定要一半。”

“为什么?”“橙子在分成十六分之一时已流去很多橙汁了,老师你说是不是?”报告灾情从前有个县遭了灾,村民们推选了一个老头去报告灾情,要求减点税。老头来到县衙,县官问他:“小麦收了几成?”老头答:“五成。”

“棉花呢?”“三成。”“玉米呢?”“两成。”

县官听了大怒道:“有。

9.六年级数学手抄报内容,多给几个,每条不要超过150字

1、数学家、科学家的故事2、数学知识3、数学难题高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。

.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。

.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才科学家的故事:牛顿 少年时代的牛顿不像高斯、维纳那样,从小就显露出引人注目的科学天才;也不像莫扎特那样表现了令人惊叹的艺术禀赋。

他跟普通人一样,轻松愉快地度过了中学时代。 如果说他和别的孩子有什么不同的话,那就是他的动手能力相当强。

他做过会活动的水车;做过能测出准确时间的水钟;还做过一种水车风车联动装置,它使风车可以在无风时借助水力驱动。 15岁那年,一场罕见的暴风雨侵袭英格兰。

狂风怒吼,牛顿家的房子直晃悠,就像要倒了似的。牛顿为大自然的威力迷住了,不禁想测验飓风的力量。

他冒着狂风暴雨来到后32313133353236313431303231363533e58685e5aeb931333330363234院,一会儿逆风跑,一会儿顺风跳。为了接受更多的风力,他索性敞开斗篷向上跳跃,认准起落点,仔细量距离,看狂风把他吹出多远。

1661年牛顿考上了剑桥大学,尽管在中学里是个优等生,可是剑桥大学集中了各地的尖子学生,他的学习成绩赶不上别人,特别是数学的差距更大。但是他并不气馁,就像他少年时代喜欢思考问题一样,踏踏实实地学习,直到透彻地理解为止。

在大学的头两年里,他除学习算术、代数、三角外,还认真学习了欧几里得《几何原本》,弥补了过去的不足。他又钻研笛卡儿的《几何学》,熟练地掌握了坐标法。

这些数学知识,为牛顿后来的科学研究打下了坚实的基础。

6年级数学小知识手抄报内容

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除