1.四年级数学小知识
黄金比
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"斐波那契数列",这些数被称为"菲斐波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列 1,1,2,3,5,8,13,21,。后二数之比2/3,3/5,4/8,8/13,13/21,。近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
2.数学四年级小知识
小学四年级数学知识点归纳四年级上册知识点概括总结1.大数的认识:(1)亿以内的数的认识:十万:10个一万;一百万:10个十万;一千万:10个一百万;一亿:10个一千万;2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。3.数级分类(1)四位分级法即以四位数为一个数级的分级方法。
我国读数的习惯,就是按这种方法读的。 如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。
这些级分别叫做个级,万级,亿级……。 (2)三位分级法 即以三位数为一个数级的分级方法。
这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。
这就说明计数单位和数位的概念是不同的。5.数的产生:阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。
到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。
以后,这些数字又从欧洲传到世界各国。阿拉伯数字传入我国,大约是13到14世纪。
由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。
阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。6.自然数:用以计量事物的件数或表示事物次序的数 。
即用数码0,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数由0开始(包括0), 一个接一个,组成一个无穷的集体。
7.计算工具:算盘、计算器、计算机。8.射线:在几何学中,直线上的一点和它一旁的部分所组成的图形称为射线。
如下图所示:8.射线特点(1)射线只有一个端点,它从一个端点向另一边无限延长。 (2)射线不可测量。
9.直线:直线是点在空间内沿相同或相反方向运动的轨迹。10.线段:线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。
其中AB表示直线上的任意两点。11.线段特点(1)有限长度,可以测量 (2)两个端点12.线段性质: (1)两点之间线段最短。
(2)连接两点间线段的长度叫做这两点间的距离。 (3)直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
直线没有距离。射线也没有距离。
因为,直线没有端点,射线只有一个端点,可以无限延长。13.角(1)角的静态定义具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。 (2)角的动态定义一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边 14.角的符号:角的符号:∠15.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。
此外,还有密位制、弧度制等。 (1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。 (3)钝角:大于90°而小于180°的角叫做钝角。
16.乘法:乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
17.乘法算式中各数的名称:“*”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。 10(因数) *(乘号) 200(因数) =(等于号) 2000(积)18.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
19.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。20.平行四边形:在同一平面内有两组对边分别平行的四边形叫做平行四边形。
21.梯形:梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。
不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。22.除法:除法法则:除数是几位,先。
3.小学数学的知识点总结
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 )表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 )周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
4.四年级数学知识要点
总:一、亿以内数的认识1.一(个),十,百、千、万……亿都是计数单位.2.每相邻两个计数单位之间有什么关系?每相邻两个计数单位的进率都是“10”.3.求近似数的方法叫“四舍五入”法.4.是“舍”还是“入”要看省略的尾数部分的最高位数是小于5还是大于5.5.表示物体个数的1,2,3,4,5,6,7,8,9,10,11,……都是自然数.一个物体也没有用0表示.0也是自然数.6.最小的自然数是0,没有最大的自然数,自然数的个数是无限的.7.每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法.二、角的度量 1.像手电简、汽车灯和太阳等射出来的光线,都可以近似地看成是射线.射线只有一个端点,可以向一端无限延伸.2.直线没有端点、可以向两端无限延伸.3.直线、射钱与线段有什么联系和区别?联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸,射线只有一个端点,长度无限,向一方无限延伸,线段有两个端点,长度有限.4.直线和射线都可以无限延伸.线段可以量出长度.5.从一点引出两条直线所组成的图形叫做角.6.角的计量单位是“度”,用符号号“°”表示.把半圆分成180等份,每一份所对的角的大小是1度,记作1°.7.锐角、钝角、直角,平角和周角之间有什么关系?直角=90度,钝角大于直角小于平角,平角=180度,周角=360度,锐角小于90度。
单元概括:第一单元 亿以上数的认识 姓名: 一、亿以内数的读法:○1先读万级,再读个级。○2万级的数,要按照个级的读法来读,再在后面加一个“万”字。
○3每级末尾不管有几个0都不读;中间有一个或连续几个0都只读一个零。 二、亿以内数的写法:○1先写万级,再写个级。
○2哪一个数位上一个单位 也没有,就在哪一位上写0。○3一定要先分级再来读数或写数。
三、比较数的大小的方法:○1位数不同时,位数多的数大。○2位数相同时,从最高位比起,哪个数最高位上的数大,这个数就大;如果最高位上的数字相同,就比较下一位上的数字,直到比较出大小为止。
四、整万数改写成用“万”作单位的数的方法;将万位后面的4个0省略,换成一个“万”字。 五、用“四舍五入”法求近似数的方法:求一个数的近似数,主要是看它的省略的尾数,如果省略的尾数最高位上的数是0、1、2、3、4,就把尾数都舍去,改写成“0”,如果省略的尾数最高位上的数是5、6、7、8、9,就把尾数省略,并向前一位进1。
六、用“四舍五入”法求近似数的关键:找准尾数的最高位,如果省略万位后面的尾数,就看千位;如果省略千位后面的尾数,就看百位;如果省略百位后面的尾数,就看十位„„ 七、表示物体个数的0、1、2、3、4、5、6、7、8、9„„都是自然数,0是最小的自然数。没有最大的自然数,自然数的个数是无限的。
八、每相邻两个计数单位之间的进率是十,这种计数法叫做十进制计数法。 九、亿以上数的读法与亿以内数读法相同:先分级,从最高位读起,一级一级往下读,读亿级时按照个级读法来读,再在后面加一个“亿”字。
十、亿以上数的写法与亿以内的写法相同:先分级,从最高位写起,一级一级往下写,每一级的写法与个级的写法一样。 十一、读数和写数关键都是“先分级”。
十二、对整亿数的改写:直接省略亿位后面的8个0,再加上一个“亿”字。 十三、不是整亿数的用“四舍五入”法省略亿位后面的尾数再改写:先分级再在尾数最高位“千万位”上进行“四舍五入”,用“”写出得数,不要忘记写“亿”字。
十四、算盘上每一档代表一个数位,记数前先要确定某一档作个位,向左依次是十位、百位、千位„„。每一档的上珠代表5,下珠代表1。
十五、电子计算器操作键的功能。 符号 名称 功能 ON/C 开启键 开或消除输入的内容 OFF 关闭键 关闭 CE 消除键 只消除上一次刚输入的内容 第二单元 角的度量 一、直线、射线、线段的联系和区别 联 系 区 别 都是直的 端点个数 延长情况 长短 直线 无 可以向两端无限延长 无 射线 1 可以向一端无限延长 无 线段 2 不能向一端延长 有长短 二、从一点出发可以画无数条射线,经过一点只能画无数条直线,经过两点只能画一条直线。
三、量角器由中心点,0刻度线,内圈刻度,外圈刻度组成,在量角时注意:(1)量角器的中心点与角的顶点重合.(2)使量角器的内面0刻度(外面的0刻度)与角的一条边重合.(3)角的另一边指向哪,就根据内圈(外圈)刻度读数.(4)要注意从0刻度读起,做到“0对内读内,0对外读外”。 四、角的大小与角的两边长短无关与两边叉开的大小有关,角的两边叉开越大角就越大. 五、小于900的角叫锐角,大于900而小于1800 的角叫钝角. 六、1平角1800=2直角 1周角=3600=2平角=4直角 七、锐角八、画指定度数的角,注意做到两重合:量角器的中心点与顶点重合;0刻度线与所画的角的一条边重合;还要看准度数,“0对内读内,0对外读外”所画的边对应的0刻度在内圈,就看内圈的刻度。
第三单元 三位数乘两位数 一、口算整数或整千数乘一位数,都可以先把0前面的数相乘,再在积的末尾添上相应个数的0。 二、三位数乘两位数的笔算方法,先用两位。
5.小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数32313133353236313431303231363533e59b9ee7ad9431333431366339和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。扩展资料:整数1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒 参考资料来源:百度百科-小学数学知识 参考资料来源:百度百科-小学数学。
6.小学四年级数学的知识要点有哪些
一、亿以内数的认识1. 一(个),十,百、千、万……亿都是计数单位。
2. 每相邻两个计数单位之间有什么关系? 每相邻两个计数单位的进率都是“10”。3. 求近似数的方法叫“四舍五入”法。
4. 是“舍”还是“入”要看省略的尾数部分的最高位数是小于5还是大于5。 5. 表示物体个数的1,2,3,4,5,6,7,8,9,10,11,……都是自然数。
一个物体也没有用0表示。0也是自然数。
6. 最小的自然数是0,没有最大的自然数,自然数的个数是无限的。 7. 每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
二、角的度量 1. 像手电简、汽车灯和太阳等射出来的光线,都可以近似地看成是射线。射线只有一个端点,可以向一端无限延伸。
2. 直线没有端点、可以向两端无限延伸。3. 直线、射钱与线段有什么联系和区别?联系:射线、线段都是直线的一部分,线段是直线的有限部分。
区别:直线无端点,长度无限,向两方无限延伸,射线只有一个端点,长度无限,向一方无限延伸,线段有两个端点,长度有限。4. 直线和射线都可以无限延伸。
线段可以量出长度。5. 从一点引出两条直线所组成的图形叫做角。
6. 角的计量单位是“度”,用符号号“°”表示。把半圆分成180等份,每一份所对的角的大小是1度,记作1°。
7. 锐角、钝角、直角,平角和周角之间有什么关系?直角=90度,钝角大于直角小于平角,平角=180度,周角=360度,锐角小于90度,锐角<直角<钝角<平角<周角。8. 钝角大于90°,而小于180°。
锐角小于90°。平角等于180°,等于两个直角。
三、三位数乘两位数1. 速度x时间=路程四、平行四边形和梯形1. 在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
2. 从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。3. 两组对边分别平行的四边形叫做平行四边形,只有一组对边平行的四边形叫做梯形。
4. 长方形和正方形可以看成特殊的平行四边形吗?为什么?可以,因为长方形和正方形两组对边分别平行,而且都是四边形,所以可以看成特殊的平行四边形。5. 从平行四边形一条边上的一点到对边引一条垂线。
这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。6. 两腰相等的梯形叫做等腰梯形。
7. 有一种特殊的平行四边形,它的四条边都相等,这样的平行四边形叫菱形。五、除数是两位数的除法六、统计七、数学广角。
7.小学四年级数学复习提纲
一、数与计算 整数数位顺序表 数级 亿级 万级 个级 数位 千亿位 百亿位 十亿位 亿位 千万位 百万位 十万位 万位 千位 百位 十位 个位 计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 一 1.每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
2.看表说一说:如10个一千万是一亿,一千万是10个一百万。 数位:个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位… 计数单位:个、十、百、千、万、十万、百万、千万、亿、十亿… 个级的数表示的是多少个“一”。
万级的数表示多少个“万”。亿级的数表示多少个“亿”。
每四个数位为一级。分为:个级、万级、亿级。
读数:从高位读起,一级一级往下读,读亿级或万级的数按照个级的读法读,再在后面加上一个“亿”字或“万”字。数中间有一个0或连续有几个0,都只读一个零,每级末尾的零都不读。
写数:先写亿级,再写万级,最后写个级,哪一位上一个单位也没有,就写0占位。 3.308 4000 0860是由3个百亿、8个亿、4个千万、8个百、6个十组成;也可以说是由308个亿、4000个万、860个一组成。
4. “四舍五入”法:4、3、2、1、0舍去;5、6、7、8、9舍去后向前一位进1。 5. 用“=”和“≈”的区别: 7580000=758万 7508000≈751万 9000000000=90亿 9420000000≈94亿 省略与改写:958 5006 5200 省略亿位后面的尾数时,要看千万位:959 0000 0000 改写用“亿”作单位的数是: 959亿 6.比较数的大小 位数不同,位数多的数就大;位数相同,左起第一位的数大的那个数就大,如果左起第一位上的数相同,就比较左起第二位上的数…… 7. 表示物体个数的1、2、3、4、5、6、7、8、9、10、11,…都是自然数。
一个物体也没有,用0表示。0也是自然数。
最小的自然数是0。没有最大的自然数,自然数的个数是无限的。
0不能作除数。比如:5÷0不能得到商,因为找不到一个数同0相乘得到5。
又如:0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。 8. 在乘法里,一个因数不变,另一个因数乘几或除以几,积也要乘几或除以几。
在除法里,被除数和除数同时扩大或缩小相同倍数(0除外),商不变。 在除法里,除数不变,被除数变大,商也变大。
在除法里,被除数不变,除数变大,商反而变小。 180÷30:可看作180除以30或30除180。
两位数除法的估算,一般是把两位数看作与它比较接近的整十数,再口算出结果。 在笔算除法时,把除数看做整十数,想这个整十数乘几,积小于并且最接近被除数,就商几或用几试商。
从被除数的高位数起,先看被除数的前两位;如果前两位比除数小,就要看前三位;除到被除数的哪一位,商就写在那一位的上面;余下的数必须比除数小 两位数乘法,先用一个乘数个位上的数去乘另一个乘数,得数的末尾和个位对齐;再用这个乘数十位上的数去乘另一个乘数,得数的末尾和十位对齐,最后把两次乘得的积加起来。 先把0前面的数相乘,乘完以后再看乘数末尾共有几个0,就在乘得的数的末尾填写几个0 二、空间与图形 1. 线段有两个端点,可以量出长度。
射线只有一个端点,可以向一端无限延伸。从一点出发可以画无数条射线。
直线没有端点,可以向两端无限延伸。经过任意一点可以画无数条直线,经过任意两点只能画一条直线。
2. 从一点引出两条射线所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。
角的符号用“∠”表示。 量角的大小,要用量角器。
角的计量单位是“度”。用符号“°”表示。
角的大小与角的两边画出的长短没有关系,角的大小要看两条边叉开的大小。 锐角:小于90° 直角:等于90° 钝角:大于90°而小于180° 平角:等于180° 周角:等于360° 1平角=2直角 1周角=2平角=4直角 钟表每一小时是30°,比如2小时的夹角就是60°。
三角形内角之和是180°,四边形内角之和是360°。 ∠1和∠2如果在同一条线的同一侧上,就是两角成平角,∠1+2=180°。
3. 在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。 如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
4. 从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。 5. 平行线之间的距离处处相等。
6. 两组对边分别平行的四边形叫做平行四边形。平行四边形容易变形。
长方形和正方形可以看成是特殊的平行四边形。 只有一组对边平行的四边形叫做梯形。
两腰相等的梯形叫做等腰梯形。 从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
画高线要用虚线,并做出垂足记号。 两个完全一样的梯形可以拼成一个平行四边形。
两个高相等的平行四边形拼在一起还是平行四边形。 7. 四边形之间的关系图。
8. 平行四边形:两组对边分别平行;两组对边分别相等。 长方形:两组对边分别平行;两组对边分别相等;有4个直角。
正方形:两组对边分别平行;两组对边分别相等;四边相等,4个直角。 长方形有2条对称轴,正方形。
8.收集20个数学小常识
1。
对顶角相等. 2。圆周率是一个无理数。
3。三角形内角和为180度 4。
多边形内角和为(边数-2)*180度 5。多边形外角和恒等于360度 6。
一次函数的图象是一根直线。 7。
正比例函数的图象是一根过原点的直线。 8。
反比例函数的图象是双曲线。 9。
两次函数的图象是抛物线。 10。
同底数幂相乘,底数不变,指数相加。 11。
两条平行线被第三条直线所截,同位角相等。 12。
两条平行线被第三条直线所截,内错角相等。 13。
两条平行线被第三条直线所截,同旁内角互补。 14。
一个三角形的三条中线交于一点,这个点叫做重心。 15。
一个三角形的三个角的角平分线交于一点,这个点叫做内心。 16。
一个三角形三边上的三条高交于一点,这个点叫做垂心。 17。
一个三角形三边的中垂线交于一点,这个点叫做外心。 18。
同底等高的两个三角形面积相等。 19。
1+2+3+……+n=(1+n)*n/2 20。 Sin90=1,Cos90=0,Sin0=0,Cos0=1。