初一数学知识小技巧

2022-06-29 综合 86阅读 投稿:人来疯

1.初一数学知识点总结

第一册第一章 有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。整数和分数统称有理数。

1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。a-b=a+(-b) 1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。两个数相乘,交换因数的位置,积相等。

ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。1.4.2有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a• (b≠0)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方1.5.1乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行1.5.2科学记数法把一个大于10的数表示成a*10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数。精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。对于用科学记数法表示的数a*10n,规定它的有效数字就是a中的有效数字。

第二章 一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程。只含有一个未知数(元),未知数的指数都是1(次),这样的方。

2.初中数学学习方法

初中数学是一个整体。

初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。

很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。 这里先列举一下在初一数学学习中经常出现的几个问题: 1、对知识点的理解停留在一知半解的层次上; 2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力; 3、解题时,小错误太多,始终不能完整的解决问题; 4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏; 5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点; 以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。 那怎样才能打好初一的数学基础呢? (1)细心地发掘概念和公式 很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢? 我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

(2)总结相似的类型题目 这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。

这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。

久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。 我们的建议是:“总结归纳”是将题目越做越少的最好办法。

(3)收集自己的典型错误和不会的题目 同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。

同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。

这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。 我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

(4)就不懂的问题,积极提问、讨论 发现了不懂的问题,积极向他人请教。这是很平常的道理。

但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。

抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。

知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。

直到无法赶上步伐。 讨论是一种非常好的学习方法。

一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。

我们的建议是:“勤学”是基础,“好问”是关键。 (5)注重实战(考试)经验的培养 考试本身就是一门学问。

有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。

可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。

心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。

做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。

另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。 我们的建议是:把“做作业”当成考试,把“考试”当成做作业。

以上,我们就初。

3.初一数学上册学习方法和知识点

学习方法: 1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是最好的老师嘛。 2.认真听课:听课应包括听、思、记三个方面。

听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。

记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。 3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆,很重要噢。

4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。

至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。 5.学会总结:大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。

6.学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料知道吗? 以上六步法可是很有效的,一定要坚持,相信你一定能学好数学。这里预祝新初一的所有同学学习进步,身体健康,快乐成长。

初一数学上册复习教学知识点归纳总结 一:有理数知识网络:概念、定义:1、大于0的数叫做正数(positive number)。2、在正数前面加上负号“-”的数叫做负数(negative number)。

3、整数和分数统称为有理数(rational number)。4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则减去一个数,等于加上这个数的相反数。14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)22、根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何次幂都是0。23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

24、把一个大于10数表示成a*10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)注:黑体字为重要部分二:整式的加减知识网络:概念、定义:1、都是数或字母的积的式子叫做单项式。

4.如何掌握初一数学的学习窍门

数学在众多学科中一向是比较受重视的科目。

因为学好数学不仅能让学生在考试中提高成绩,更重要的是运用数学知识还可以解决生活中的许多问题。而学好数学的关键是如何掌握好的方法。

于是,记者采访了市骨干教师、第四十五中学数学教师刘琼,请她传授几点学习经验。 刘老师首先强调了小学数学与初中数学存在着差异。

小学数学着重培养学生的计算能力,而初中数学则是要培养学生用数学关系进行说理的能力。也就是说,初中数学中有一些开放性的题,还有些一题多解的题。

所以对于刚刚升入中学的学生来说会有些不适应,对此,学生们不要心急,这是个思维转变的过程,今后会在老师的指导下,通过不断积累和做题来调整。初一的数学教材中,有许多公式及定理,这些知识光靠死记硬背是不行的,学生应该按照老师指点的方法,或是自己寻找的方法来记忆,在理解的基础上来掌握这些定理和公式,这样不但记得牢而且用得活。

初一学生刚刚接触应用题,会觉得很难。因为应用题中有许多文字表述,学生可能会读不懂,继而找不出数量之间的关系,就很难解出答案。

扩大阅读量是解决这个问题的好方法。学生可以通过多读书,多看报来开阔思路、提高阅读能力和理解能力。

另外,学生在做题的时候一定要认真,做完后检查一下,养成良好的做题习惯。 恐惧心理也是初一学生在学习数学的过程中遇到的一个共性问题。

因为多数的学生在学习的过程中都会遇到困难,在解决难题的过程中,就会产生恐惧心理,久而久之,有的学生见到数学就害怕,不喜欢数学。刘老师认为,兴趣是最好的老师。

有了兴趣,就会喜欢学、愿意学。数学与实际生活联系紧密,所以学生可以试着用数学知识来解决生活中的实际问题,从中培养学习数学的兴趣。

在培养兴趣方面,还可以有选择的看一些好的电视节目。比如《三星智力快车》、《科学与探索》以及中央十套的一些节目,都很适合初中阶段的学生学习。

同时,还应该养成好的学习规律和生活规律,培养良好的生活习惯。 最后,刘老师指出,初一学生的思维比较活跃,所以学生在上课时要“多说,敢说”,说白了,就是要积极回答老师提出的问题,不要害怕自己说错,要把课堂当成自己的家,把同学当成朋友而不是敌人,对于回答错的问题课后要自己总结。

5.初一数学:教你如何最简单的学好初一数学求答案

初中数学是一个整体,初一新概念最多,初二的难点最多。

相对而言,初一数学知识点虽然很多,但都比较简单。这个时期如果积累的一些小问题没有及时解决,进入初二后,随着学科的增加、难度的加深,小问题就凸现出来。

所以初一的学习非常关键,我们这里先列举一下同学们经常出现的几个问题: 1、对知识点的理解一知半解; 2、孤立的看待每一道题,缺乏举一反三的能力; 3、解题效率低,不适应考试节奏; 4、不会归纳总结所学内容; 以上这些问题如果在初一年级不能很好的解决,进入初二以后可能就会出现成绩的滑坡。那么,怎样才能打好初一年级的数学基础呢? (1)总结相似的类型题目 当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”的境界。

(2)收集自己的典型错误和不会的题目 做题有两个重要的目的:一是将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。

但现实情况是,同学们只追求做题的数量,而不追求解决出现的问题,更谈不上收集错误。 建立自己个性化错题本,这些错题都是学习过程中的薄弱环节,同学们要重点学习。

(3)对不懂的问题积极提问 孔子曰:“三人行必有我师焉。”向老师和同学请教是一种非常好的学习状态,但就是这一点,很多同学都做不到。

原因可能是:对问题的重视不够,不求甚解;二是不好意思,问老师怕被训,问同学怕被同学瞧不起。

6.初一数学上册知识点

有理数知识网络:概念、定义:1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。3、整数和分数统称为有理数。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴。5、在直线上任取一个点表示数0,这个点叫做原点。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。9、两个负数,绝对值大的反而小。

10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。13、有理数减法法则减去一个数,等于加上这个数的相反数。

14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。20、两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an 中,a叫做底数,n叫做指数22、根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。显然,正数的任何次幂都是正数,0的任何次幂都是0。

23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。24、把一个大于10数表示成a*10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字注:黑体字为重要部分二:整式的加减知识网络:概念、定义:1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数。3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。5、多项式里次数最高项的次数,叫做这个多项式的次数。

6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

三:一元一次方程知识网络:概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。6、把等式一边的某项变号后移到另一边,叫做移项。

7、应用:行程问题:s=v*t 工程问题:工作总量=工作效率*时间盈亏问题:利润=售价-成本 利率=利润÷成本*100%售价=标价*折扣数*10% 储蓄利润问题:利息=本金*利率*时间本息和=本金+利息三:图形初步认识知识网络:概念、定义:1、我们把实物中抽象的各种图形统称为几何图形。2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、几何体简称为体。6、包围着体的是面,面有平的面和曲的面两种。

7、面与面相交的地方形成线,线和线相交的地方是点。8、点动成面,面动成线,线动成体。

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们。

7.初一数学如何打好基础

怎样打好初一数学基础呢?初中数学是一个整体。

初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。

很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。 现在中考网的初二学员中,有一部分新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补的。

这个问题究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题: 1、对知识点的理解停留在一知半解的层次上; 2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力; 3、解题时,小错误太多,始终不能完整的解决问题; 4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏; 5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点; 以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。 那怎样才能打好初一的数学基础呢? (1)细心地发掘概念和公式 很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢? 我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)(2)总结相似的类型题目 这个工作,不仅仅是老师的事,我们的同学要学会自己做。

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。

其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

我的建议是:“总结归纳”是将题目越做越少的最好办法。 (3)收集自己的典型错误和不会的题目 同学们最难面对的,就是自己的错误和困难。

但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。

另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。

但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。(4)就不懂的问题,积极提问、讨论 发现了不懂的问题,积极向他人请教。

这是很平常的道理。但就是这一点,很多同学都做不到。

原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。

“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。

这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。

讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。

需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。 我的建议是:“勤学”是基础,“好问”是关键。

(5)注重实战(考试)经验的培养 考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。

课下做题也都会。可一到考试,成绩就不理想。

出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。

每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题。

8.初中数学学习方法是什么

初中数学学习方法一、学会学习 五要:1、围绕老师讲述展开联想;2、理清教材文字叙述思路;3、听出教师讲述的重点难点;4、跨越听课的学习障碍,不受干扰;5、在理解基础上扼要笔记。

五先:1、先预习后听课;2、先尝试回忆后看书;3、先看书后做作业;4、先理解后记忆;5、先知识整理后入眠。 五会:1、会制定学习计划;2、会利用时间充分学习;3、会进行学习小结;4、会提出问题讨论学习;5、会阅读参考资料扩展学习。

二、学习数学应注意培养什么样的能力 1运算能力。2空间想象能力。

3逻辑思维能力。4将实际问题抽象为数学问题的能力。

5形数结合互相转化的能力。6观察、实验、比较、猜想、归纳问题的能力。

7研究、探讨问题的能力和创新能力。 三、掌握预习学习方法,培养数学自学能力预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节。

数学的预习主要是看数学书,这需要我们既要动脑思考,还要动手练习。数学预习可以有“一划、二批、三试、四分”的预习方法。

以“方程和它的解”一节为例来说明这种预习方法。“一划”就是圈划知识要点,和“已知数”、“未知数”、“方程的解”、“解方程”几个基本概念,以及例1、例2下面“注意”提示内容都要圈画出来。

“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方,对例1中判定y2+2=4y-1与2x2+5x+8是否是方程,为什么?说不出理由,这时我们可以把疑问批在此二题旁。“三试”就是尝试性地做一些简单的练习,检验自己预习的效果。

“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。例如通过预习这节内容,我们可以列出以下知识要求:(1)什么是已知数,什么是未知数,什么是方程,什么是方程的解,什么是解方程。

(2)会判别一个式是否是方程,(3)会列一元一次方程,(4)会检验一个数是否是某一个方程的解。四、掌握课堂学习方法,提高课堂学习效果课堂学习是学习过程中最基本,最重要的环节。

数学课学习要坚持做到“五到”即耳到、眼到、口到、心到、手到。耳到:就是在听课的过程中,既要听老师讲的知识重点和难点,又要听同学回答问题的内容,特别要注意听自己预习未看懂的问题。

眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来。口到:就是自己预习时没有掌握的,课堂上新生的疑问,都提出来,请教老师或同学。

心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。数学课堂学习有时是掌握例题的解法,有时是学会运用公式,关键是理解并能融汇贯通,灵活使用。

例如,证明任意三角形的中位线等于底边的一半,老师讲了例题,启发同学们思考,许多同学联想到平行四边形的性质与平行线辅助线的作法,很快可以思考出下列四种证法:对于老师讲的新概念,应抓住关键字眼,变换角度去理解。如命题“只有零和1的算术平方根是它本身”,可以改写为“如果一个数的算术平方根是它本身,那么这个数是零或1”。

手到:就是在听,看,思的同时,要适当地动手做一些笔记。五、掌握练习方法,提高解答数学题的能力数学的解答能力,主要通过实际的练习来提高。

数学练习应注意些什么问题呢?1.端正态度,充分认识到数学练习的重要性。不论是预习练习,课堂练习,还是课后作业,复习练习,都不能只满足于找到解题方法,而不动手具体练习一练。

实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。2.要有自信心与意志力。

数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。

解答后,还应进行检查。4.细观察、活运用、寻规律、成技巧。

例如下列一组一元一次方程练习,通过细致观察,会获巧解。以上三题应精心观察去括号与去分母的技巧与注意事项。

以上两题要细心观察运用整体思想灵活变形,正确迅速解题。本题若不观察,按常规解法势必繁冗,联想到方程根的概念,可获精巧解答。

又如下题,若大胆联想,活用公式,转具体为抽象,用字母代替数,则可得巧解。已知: A=199301981*198101993,B=199301982*19810992,试比较A与B的大小。

解:设x=199301981,y=198101992则: A=x(y+1)=xy+x,B=y(x+1)=xy+y∵x>y,∴A>B.六、掌握复习方法,提高数学综合能力。复习巩固应注意掌握以下方法。

1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习,一定要克服不看书复习就做作业,做不起再翻书,把书当成工具书查阅的不良习惯。2.广泛采用综合复习方法。

初一数学知识小技巧

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除