1.分数小知识
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数。
分母表示把一个物体平均分成几份,分子表示取了其中的几份。
分数符号
分数分别产生於测量及计算过程中。在测量过程中,它是整体或一个单位的一部份;而在计算过程中,当两个 数(整数)相除而除不尽的时候,便得到分数。
其实很早已有分数的产生,各个文明古国的文化也记载有关分数的知识。古埃及人巴比伦人亦已有分数记号, 至於古希腊人则用L"表示 ,例如:αL"=1, βL"=2,及 γL"=3等。至於在数字的右上角加一撇点「 '」,便表示该数分之一。
至於中国,很早就已采用了分数,世上最早的分数研究出现於《九章算术》,在《九章算术》中,有系统的讨 论了分数及其运算。(《九章算术》「方田」章「大广田术」指出:「分母各乘其馀,分子从之。」这正式的给出 了分母与分子的概念)。而古代中国的分数记数法,分别有两种,其中一种是汉字记法,与现在的汉字记数法一样 :「…分之…」;而另一种是筹算记法:
用筹算来计算除法时,当中的「商」在上,「实」(即被除数)列在中间,而「法」(即除数)在下,完成整 个除法时,中间的实可能会有馀数,如图所示,即表示分数。在公元3世纪,中国人就用了 这种记法来表示分数了。
古印度人的分数记法与中国的筹算记法是很相似的,例如。 在公元12世纪,阿拉伯人海塞尔最先采用分数缐。他以来表示。而斐波那契是最早把分数缐引入欧洲的人。至15世纪后, 才被逐渐形成现代的分数算法。在1530年,德国人鲁多尔夫在计算+ 的时候,以计算得 ,到后来才逐渐的采用现在的分数形式。
1845年,德摩根在他的一篇文章「函数计算」( The Calculus of Functions)中提出以斜缐「/」来表示 分数缐。由於把分数以a/b来表示,有利於印刷排版,故现在有些印刷书籍也有采用这种 斜缐「/」分数符号。
再给你一个网址,自己去看吧
/w?ct=17&lm=0&tn=baiduWikiSearch&pn=0&rn=10&word=%B7%D6%CA%FD
2.有哪些自然数之最
最小的自然数是0
故事:
唐僧师徒四人去西天取经,一天路过桃园,停下来休息。孙悟空、猪八戒见了水蜜桃口水直流。师傅说:“要吃桃子可以,不过我得先考考你们。” 悟空、八戒连连点头说:“行啊,行啊。”师傅说:“有四个桃子平均分给你们两人,每人得到几个?请写下这个数字。”徒弟一听,哈哈大笑,这还不容易!提笔写了个“2”。师傅接着说:“要是把两个桃子平均分给你们两人,每人得到几个?再写下这个数。”孙悟空手快,顺手写了个“1”。师傅不紧不慢地说:“要是把一个桃子平均分给你们两人,每人得到多少?又该怎么写呢?”“半个!”“半个!”
“半个该怎么写呢?”二位徒弟你看看我,我看看你,不知所措。
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数。
分母表示把一个物体平均分成几份,分子表示取了其中的几份
3.小学数学科学所有概念
小学数学知识概念公式汇总 小学一年级 九九乘法口诀表。
学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面 1、单价*数量=总价 2、单产量*数量=总产量 3、速度*时间=路程 4、工效*时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6) 6、1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米。
1亩=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18 9、比例的基本性质。
4.【七年级上册数学知识点归纳】
七年级(上)数学知识点归纳与总结一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数.知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.知识点4:绝对值的概念:(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.知识点11: 乘法与除法1.乘法法则 2.除法法则3.多个非零的数相乘除最后结果符号如何确定知识点12:倒数1. 倒数概念2. 如何求一个数的倒数?(注意与相反数的区别)知识点13:乘方1. 乘方的概念,乘方的结果叫什么?2. 认识底数,指数3. 正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________知识点14:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.知识点15:科学记数法科学记数法的概念? 注意a的范围。
5.介绍一种科学小知识的作文
知识就是力量知识就是力量——题记知识是一切力量的源泉,是文人骚客抒发豪情壮志的资本;是国家兴旺发达,科学发展的力量源泉;是人们独立于世界文化之林的基石。
因为知识就是力量。“江山代有人才出,各领风骚数百年。”
是文人墨客对知识的渴望,是文人抒展才华,是实现远大抱负人的渴望。《滕王阁序》让王勃一举成名,尽情抒发沉郁顿挫的感慨之情。
十年苦读只为一朝的他成功了,如今是他壮志得以抒发的时刻,然而他命运多舛,英年早逝,让人倍感惋惜。可侯蒙却与众不同,一首《临江仙》便让他对未来充满了希望,也借机回击了那些嘲笑他的人。
以后他升官宰相。是知识给了他机会,是知识充实了自己。
因为知识就是力量。“科学是第一生产力,知识就是科学发展的源泉。”
是国家对知识的重视,因为国家的发达离不开知识。它是国家繁荣昌盛,独立于世界之林的基础。
曹公对贤才如饥似渴,对关羽的重视表现得淋漓尽致。温酒斩雄华,过五关斩六将,无一不是曹公对关羽的赏识之举,才有了关于义释曹操华容道。
周公吐哺也反映了求贤若渴之情。因为国家的发展需要人才,需要人才治国之邦。
而知识也是人们独立于世界文化之林的基石。诺贝尔奖就是对拥有知识的人的赞扬。
鲁迅,矛盾,莫言无一不是知识的拥有者,知识给他们带来了力量,带来了生命价值的气息。因为他们坚信:知识就是力量。
(文章阅读网:)也许有人困惑:拥有许多知识的人怎么变成书呆子?有些人读书不多在事业上却取得了成功?在我看来:变成书呆子的人是因为他们不知道将知识得以运用。而读书少的却取得成功是他们善于动脑艰苦奋斗罢了。
知识就是力量,让你对人生充满了希望。
6.日常生活中分数的应用
一、日常生活中分数的应用也很多见,以下面两个生活现象为例:
1、肯德基推来出四个优惠套餐,A套餐原价15元,现价12元;B套餐原价12元,现价8元;C套餐原价20元,现价15元;D套餐原价9元,现价7元。如何想买一套优惠幅度最大的?
分源析:可以用分数来计算出最优惠的一套。
利用分数的基本知识可以先得出现价与原价的bai比: A是4/5 ,B是2/3,C是3/4,D是7/9。
再比较这几个分数的大小,就可以得出B套餐的比值最小,所以B套餐最省钱。
2、每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备。
分析:入今天的夜晚的降水概率是 20/100,明天白天有5-6级大风,降水概率是10/100,早晚du应增加衣服。 20/100、10/100让人一目了然,既清楚又简练。
二、分数的定义:
把单位“1”平均分成若干份,表示这样一份或几份的zhi数,就叫做分数,表示这样一份的数,就叫做分数单位。分数由分子、dao分数线、分母组成,分数中间的一条线叫分数线,分数线上面的数叫做分子,分数线下面的数叫做分母,读作几分之几。
7.5年级的数学小知识
一 数学笑话1.有一次,妈妈很耐心地启发丫丫做算术题:“丫丫,你已经学会做减法了,对吗?来,我们来看看,4减2等于几?” “等于2,妈妈。”
“太对了,乖孩子。那么,5减5呢?” “5减5,减5。
.”丫丫嘟哝着,“我不会,妈妈。”
“孩子,你不可能不会!想想,比如说你口袋里装着5枚硬币,可是,突然,5枚硬币都掉了。你说,口袋里还有什么?” 丫丫忽闪着两只大眼睛,说道:“掉了?那,那我的口袋里还有一个洞呀!” 2.“考算术,我总得100。”
“那是你学得好。” “可我上课从来不听讲。”
“那是你聪明,而且放学回家知道用功。” “聪明吗?倒有点,可放学后,我是一个与足球打交道的人。”
“那么你考试时,一定是靠作弊。” “不能这么说,我既没打小条抄书,又没偷看人家的,怎么算是作弊。”
“那你怎么搞的?” “我用脚踢前面的书呆子吉姆的椅子。” “不会就不会,怎么能这么淘气。”
“我踢第一脚,他用手朝后伸出五个指头。” “这是什么意思?” “第一题2+3的答案。”
“噢……要是问第十题5*8的答案呢?” “那是在我踢完第十脚以后,他先伸出四个指头,然后马上握紧拳头,于是我就知道40这个答案了。” 3.老师发表成绩:"小华三十分、小明二十分……” 小猪: 我考0 分耶! 小狗: 怎么办, 我也是耶…… 小猪: 我们两个考同分, 老师会不会以为我们作弊啊? 二 数学故事相传有一天,诸葛亮把将士们召集在一起,说:“你们中间不论谁,从1~1024中任意选出一个整数,记在心里,我提十个问题,只要求回答‘是’或‘不是’。
十个问题全答完以后,我就会‘算’出你心里记的那个数。”诸葛亮刚说完,一个谋士站起来说,他已经选好了一个数。
诸葛亮问道:“你选的数大于512?”谋士答:“不是。”诸葛亮又接连向这谋士提了九个问题,谋士都一一作了回答。
诸葛亮最后说:“你记的那个数是1。”谋士听了极为惊奇,因为这个数果真是他选的数。
你知道诸葛亮是怎样妙算的吗? 其实方法很简单,就是把1024一半一半的取,取到第十次时,就是“1”。根据这个道理,连续提十个问题,就能找到所需的数。
三.数学名言1.、王菊珍的百分数 我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。” 2、托尔斯泰的分数 俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。
他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”
1、数学的本质在於它的自由. 康扥尔(Cantor) 2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor) 3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert) 4、数学是无穷的科学. 赫尔曼外尔 5、问题是数学的心脏. P.R.Halmos 6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert 7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯 3、雷巴柯夫的常数与变数 俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。”
二、用符号写格言 4、华罗庚的减号 我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” 5、爱迪生的加号 大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。”
6、季米特洛夫的正负号 著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” 三、用公式写的格言 7、爱因斯坦的公式 近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。
并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” “如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积是多一点,但两圆之外的空白都是我们的无知面。
圆越大其圆周接触的无知面就越多。”-芝诺 柯西(A. L. Cauchy, 1789 – 1857) Men pass away, but their deeds abide. 人总是要死,但是,他们的业绩永存。
拉普拉斯(Laplace, 1749 – 1827) What we know is not much. What we do not know is immense. 我们知道的是很少的,我们不知道的是无限的。 埃尔米特(C. Hermice 1822 – 1901) Abel has left mathematicians enough to keep them busy for 500 years. 他评价阿贝尔(Abel)时,曾经说:「阿贝尔留下的可以使数学家忙碌五百年。
」 普尔森(Poisson, Siméon 1781-1840) "Life is good for only two things, discovering mathematics and teaching math。
8.数学小知识
1.、王菊珍的百分数
我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
2、托尔斯泰的分数
俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”
1、数学的本质在於它的自由. 康扥尔(Cantor)
2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor)
3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert)
4、数学是无穷的科学. 赫尔曼外尔
5、问题是数学的心脏. P.R.Halmos
6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert
7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯
3、雷巴柯夫的常数与变数
俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。”
二、用符号写格言
4、华罗庚的减号
我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”
5、爱迪生的加号
大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。”
6、季米特洛夫的正负号
著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”
三、用公式写的格言
7、爱因斯坦的公式
近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”
9.【单纯的数学名言】
1、王菊珍的百分数 我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败.” 2、托尔斯泰的分数 俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数.他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母.分母越大,则分数的值就越小.” 1、数学的本质在於它的自由.康扥尔(Cantor) 2、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要.康扥尔(Cantor) 3、没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明.希尔伯特(Hilbert) 4、数学是无穷的科学.赫尔曼外尔 5、问题是数学的心脏.P.R.Halmos 6、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰 亡.Hilbert 7、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深.高斯 3、雷巴柯夫的常数与变数 俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’.用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍.” 二、用符号写格言 4、华罗庚的减号 我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决.” 5、爱迪生的加号 大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗.” 6、季米特洛夫的正负号 著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施.” 三、用公式写的格言 7、爱因斯坦的公式 近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z.A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话.” “如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积是多一点,但两圆之外的空白都是我们的无知面.圆越大其圆周接触的无知面就越多.”-芝诺 柯西(A.L.Cauchy,1789 – 1857) Men pass away,but their deeds abide.人总是要死,但是,他们的业绩永存.拉普拉斯(Laplace,1749 – 1827) What we know is not much.What we do not know is immense.我们知道的是很少的,我们不知道的是无限的.埃尔米特(C.Hermice 1822 – 1901) Abel has left mathematicians enough to keep them busy for 500 years.他评价阿贝尔(Abel)时,曾经说:「阿贝尔留下的可以使数学家忙碌五百年.」 普尔森(Poisson,Siméon 1781-1840) "Life is good for only two things,discovering mathematics and teaching mathematics" 生命只为两件事,发展数学与教授数学 爱因斯坦(Einstein,Albert 1879-1955) I don't believe in mathematics.我不相信数学 Imagination is more important than knowledge.想象力比知识重要 Do not worry about your difficulties in mathematics,I assure you that mine are greater.不要为你的数学难处担心,我保证我的更多 Science without religion is lame; religion without science is blind.没有宗教,科学无说服力.没有科学,宗教变的盲目.高斯(Gauss,Karl Friedrich 1777-1855) God does arithmetic.上帝会算数 Few,but ripe.宁可少些,但要好些。