6年级趣味数学小知识

2023-02-28 综合 86阅读 投稿:祭奠

1.六年级趣味数学题,不要太长了

六年级趣味数学题 1、问5条直线最多将平面分为多少份? 2、太阳落下西山坡,鸭儿嘎嘎要进窝。

四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多? 3、9棵树种10行,每行3棵,问怎样种? 4、数学谜语:(“/”是分数线) 3/4的倒数 7/8 1/100 1/2 3.4 1的任何次方 以上每条打一成语。 5、一个数,去掉百分号后比原数增加了0.4455,原数是多少? 6、甲、乙、丙三人投资55万元办一个商店。

甲投资总数的1/5,余下的由乙、丙承担,且乙比丙多投资20%。乙投资多少万元? 7、把绳子三折来量,井外余4米;把绳子四折来量,井外余1米。

求井深和绳子各是多少? 8、一筐苹果分给甲、乙、丙。甲分得全部苹果的1/5加5个苹果,乙分得全部苹果的1/4加7个苹果,丙分得余下苹果的一半,最后剩下的是一筐苹果的1/8,求这筐苹果有多少个? 9、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人。

三个车间各有多少人? 10、有人用车把米从甲地运往乙地,装米的重车日行50千米,空车日行70千米,5日往返三次。甲乙两地相距多少千米? 11、兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍。

问,3年后兄弟二人各几岁?有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家, 每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香 蕉? 例题1:你让工人为你工作7天,给工人的回报是一根金条。金条平分成相连的7段,你必须在每天结束时给他们一段金条,如果只许你两次把金条弄断,你如何给你的工人付费? 例题2:现在小明一家过一座桥,过桥时候是黑夜,所以必须有灯。

现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会熄灭。

问小明一家如何过桥? 3、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么? 4、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。

可是当初他们三个人一共付出$30那么还有$1呢? 5、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同, 而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。

他们每人怎样才能取回黑袜和白袜各两对呢? 6、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离? 7、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少? 8、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了? 9、对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

10、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下? 11、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。

每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。

第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。

一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子? 12、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢? 13、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水? 14 有3顶红帽子,4顶黑帽子,5顶白帽子。

让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。

(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自。

2.关于六年级数学的趣味小知识

用数学写的人生格言:干下去还有50%成功的希望,不干便是100%的失败——王菊珍

一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数值就越小。——托尔斯泰

时间是一个常数,但对勤奋者来说,是一个“变数”。用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍——雷巴柯夫

在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有哪些问题没有解决,需要我们去探索解决。——华罗庚

天才=1%的灵感+99%的血汗。——爱迪生

A=x+y+z

其中A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。——爱因斯坦

3.数学趣味小知识 简短的 20到50字左右

趣味数学小知识

数论部分:

1、没有最大的质数。欧几里得给出了优美而简单的证明。

2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。

拓扑学部分:

1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。

3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,

摘自:/bbs2/ThreadDetail.aspx?id=31900

4.小学六年级的趣味数学题及答案

1甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求 乙的存款 9600*(1-40%)=5760(元)5760÷2+120=3000(元)3000÷(1-40%)=5000(元) 2小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个? 4*1/6=2/3 4-2/3=3又1/3(份) 3+2/3=3又2/3(份)3*2=6(个) 4*6=24(个) 3搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间? 60 * 2÷(6+ 5+ 4)= 8(小时)(60- 6* 8)÷ 4= 3(小时)(60- 5* 8)÷4= 5(小时) 4一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天? 5/6-1/3=1/2 1/2÷8=1/16, 1/16*4=1/4 1/3-1/4=1/12 [1/12-1/72*3]/2=1/48 1/16-1/72-1/48=1/36 [1-5/6]÷1/36=6天 答:还需要6天 5股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱? 10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元) 0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元) 答:老王卖出这种股票一共赚了3.3063元. 6一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人? 解: 设需要增加x人 (40+x)(15-3)=40*15 x=10 答:所以需要增加10了 7仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨? 解:第1次运走:2/(2+7)=2/9. 64/(1-2/9-3/5)=360吨。

答:原仓库有360吨货物。 8育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人? 3÷(3+5)=3/8 9/11÷(1+9/11)=9/20 60÷(9/20-3/8)=800人 9甲乙二人共同完成242个机器零件。

甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件? 设甲做了X个,则乙做了(242-X)个 6X=5(242-X) X=110 242-110=132(个) 答:甲做了110个,乙做了132个 10甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元? 8+7+5=20份(60+40)÷20=5人8*5=40人 60-40=20人7*5=35人 40-35=5人5*5=25人 20+5=25人 1350÷25=54元 54*20=1080元 54*5=270元 11哈利.波特参加数学竞赛,他一共得了68分。

评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题? 解:设哈利波特答对2X题,答错X题 20*2X-6X=68 40X-6X=68 34X=68 X=2 答对:2*2=4题共有:4+2=6题 12建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨? 设2堆为X吨,则一堆为X+85吨 X+85-30=2(X-30) x=115(2堆) x+85=115+85=200(1堆) 13一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人? 设有x个人 x+x/2+x/3=55 x=30 14学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。

三个年级段各分得多少本图书? 设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本 x+2x+3x-120=840 6x-120=840 6x=840+120 6x=960 x=960/6 x=160 高年级段为:160*2=320(本)中年级段为:160*3-120=360(本) 答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本. 15小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本? 解:设小华的有x本书 4(x+2)=6x+2 4x+8=6x+2 x=3 6x=18 16甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛? 解:设甲校有x人参加,则乙校有(22-x)人参加。 0.2 x=(22-x)*0.25-1 0.2x=5.5-0.25x-1 0.45x=4.5 x=10 22-10=12(人) 答: 甲校有10人参加,乙校有12人参加。

17某厂向银行申请甲乙两种。

5.6年级的数学小故事

>”、“ 很久很久以前,数学王国里乱糟糟的,没有任何秩序。

0~9十个兄弟不仅在王国中称王称霸,而且他们彼此之间总是吹嘘自己的本领最大。数字天使看见这种情况很生气,于是就派“>”、“三个小天使来到了数学王国,0~9十兄弟轻蔑地盯着他们,“9”问道:“你们三个是干什么的?我们的王国不欢迎你们。”

“=”天使笑了笑说:“我们是天使派到你们王国的法官,帮助你们治理好你们的国家。我是‘等号’在我两边的数字总是相等的;这两位是‘大于号’和‘小于号’他们开口朝谁,谁就大,尖尖朝谁,谁就小。”

0~9十兄弟一听他们是数字天使派来的法官,以及“=”的介绍,都乖乖地服从“>”、“蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。 丹顶鹤总是成群结队迁飞,而且排成“人”字开。

“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?” 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。

奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

6.六年级数学知识

、、、要找资料可以去百度文库啊、、(1)自然数:我们在数物体的时候,用来表示物体个数的0,1,2,3,……,都叫做自然数。

1是自然数的记数单位。自然数既可以表示事物的多少(基数),也可以表示事物的次序(序数)。

如“每星期7天”中的“7”表示的是基数,“5月3日”中的“5”和“3”表示的是序数。一个物体也没有就用0表示。

0是最小的自然数。 (2)整数和自然数:自然数都是整数,但只是整数的一部分(整数还包括负整数)。

最小的一位数是1而不是0。 0的作用:①在数字中起占位作用,表示该位上没有单位;②表示起点;③表示界线。

如温度计、数轴上的0,表示正、负数的分界线。 (3)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数就是分数单位。 分数与除法的关系:分数是一种数,除法是一种运算,它们是两个不同的概念,但它们也有密切的内在联系。

如: (4)小数:把整数“1”平均分成10份,100份,1000份……这样的一份或几份是十分之几,百分之几,千分之几……可以用小数表示。 小数的分类: (5)数位、位数和计数单位:各个计数单位所占的位置叫做数位。

一个自然数含有数位的多少叫做位数。整数和小数都是按照十进制计数法写出的数,其中个、十、百……以及十分之一、百分之一……都是计数单位。

(6)整数和小数数位顺序表: (7)百分数、成数和折扣: ①百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比。

②成数:农业上常用的名词。几成就是十分之几。

③折扣:商业上常用的名词。几折就是十分之几。

注意:百分数、成数和折扣只表示两个数的倍比关系,而分数除了表示倍比关系外,还可以是一个具体数量。 2、数的读法和写法 (1)整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。

(2)整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 (3)小数的读法和写法:整数部分按整数来读(写),小数点读作点,小数部分依次读(写)出每一位上的数。

3、数的改写 (1)多位数的改写和省略:为了读写方便,我们常把一个较大的多位数,写成用“万”或“亿”作单位的数,先找到万位或亿位,再在万位或亿位上数的右下角点上小数点,并在后面写上“万”或“亿”,要用“=”;有时也可以根据需要省略这个数某一位后面的尾数,写成近似数。省略一般用“四舍五入法”,结果用“≈”。

(2)分数、小数与百分数的互化: (3)一个最简分数,如果分母中含有2和5以外的质因数,则这个分数不能化成有限小数。 4、数的大小比较 (1)整数的大小比较:先看位数,位数多的数大;位数相同,从最高位看起,相同数位上的数大的那个数就大。

(2)小数的大小比较:先比较两个数的整数部分,整数部分大的那个数大;整数部分相同,再看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。 (3)分数大小比较:分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大。

分母不同的分数,先通分再比较。 第二节 数的整除和分数、小数的基本性质 知识要点 1、数的整除 (1)整除的意义:在小学阶段讲“数的整除”时所说的数一般指非0自然数。

数a除以数b,除得的商正好是整数而没有余数,我们就说,a能被b整除,或者说b能整除a。 (2)约数和倍数:如果a能被b整除,a叫做b的倍数,b叫做a的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。 一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。

(3)奇数和偶数:能被2整除的数叫做偶数,因为0也能被2整除,所以最小的偶数是0;不能被2整除的数叫做奇数,最小的奇数是1。 (4)能被2,3,5整除的数的特征: ①能被2整除的数:个位是0,2,4,6,8。

②能被3整除的数:各位上的数的和能被3整除。 ③能被5整除的数:个位上是0或5。

(5)质数和合数:一个数如果只有1和它本身两个约数,叫做质数;一个数,如果除了1和它本身,还有别的约数,就叫做合数。1既不是质数,也不是合数。

最小的质数是2,最小的合数是4。 (6)分解质因数:每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。

把一个合数用几个质因数相乘的形式表示出来,称为分解质因数。通常我们用短除法来分解质因数。

(7)公约数和最大公约数:几个数公有的约数叫做这几个数的公约数。其中最大的一个叫做这几个数的最大公约数。

(8)互质数:公约数只有1的两个数,叫做互质数。 (9)公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。

其中最小的一个叫做这几个数的最小公倍数。 (10)求最大公约数和最小公倍数的方法:一般采用短除法。

如果两个数中大数是小数的倍数,小数是大数的约数,则大数是它们的最小公倍数,小数是它们的最大公约数。如果两个数是互质数,则它们的最大公约数是1,最小公倍数是两数相乘所得的积 2、分数、小数的基本性质 (1)分数的基本性质:分数的分子和分母同时乘上或者除以相同的数(零除外)。

6年级趣味数学小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除