长度小知识

2021-10-04 综合 86阅读 投稿:想自由

1.急需

问:一列火车重30T,一座桥能载重20T,在没有采取任何措施的情况下这列火车是怎样顺利通过这座桥的?

答:车长桥短。

有趣的数学小知识 你知道吗?我们每个人身上都携带着几把尺子。 假如你“一拃”的长度为8 厘米,量一下你课桌的长为7 拃,则可知课桌长 为56 厘米。 如果你每步长65 厘米,你上学时,数一数你走了多少步,就能算出从你家到 学校有多远。身高也是一把尺子。 如果你的身高是150 厘米,那么你抱住一棵大树,两手正好合拢,这棵树的一 周的长度大约是150 厘米。 因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。要是你想量 树的高,影子也可以帮助你的。你只要量一量树的影子和自己的影子长度就可以 了。因为树的高度=树影长*身高÷人影长。这是为什么?等你学会比例以后就 明白了。 你若去游玩,要想知道前面的山距你有多远,可以请声音帮你量一量。声音每 秒能走331 米,那么你对着山喊一声,再看几秒可听到回声,用331 乘听到回声 的时间,再除以2 就能算出来了。 学会用你身上这几把尺子,对你计算一些问题是很有好处的。同时,在你的日 常生活中,它也会为你提供方便的。你可要想着它呀! 冬令时节,天寒地冻,小猫、小狗在睡觉时,不是我们想象中的那样趴着身子, 而是喜欢蜷缩着。那么你是否想过这是为什么呢?它与数学有联系吗?我们先来 思考一道熟悉的数学问题,题目是:用12块棱长1厘米的正方体小木块搭成不 同的长方体,共有几种不同搭法? 通过动手搭拼、试验,得到4种不同的搭法。 利用学过的知识,可知道这4个长方体的体积都相等,而它们的表面积分别为: 50(平方厘米)、40(平方厘米)、38(平方厘米)、32(平方厘米), 即(图4)的表面积最小。 这道题表明这样一个数学规律:在体积相等的情况下,小正方体之间的重合部 分越多,其表面积就越小。 根据这个数学规律,我们不难悟出:小猫、小狗在冬天喜欢蜷缩着身子睡觉, 正是在体积不变的情况下,增加身子相互重合部分,因此,减少暴露在外面的表 面积,也就是受寒面积减少,散发的热量也会减少。小猫、小狗在冬天蜷缩着身 子睡觉可以起到防寒保温的作用。

2.数学趣味小知识 简短的 20到50字左右

趣味数学小知识

数论部分:

1、没有最大的质数。欧几里得给出了优美而简单的证明。

2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。

拓扑学部分:

1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。

3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,

摘自:/bbs2/ThreadDetail.aspx?id=31900

3.生活中有哪些数学小常识啊

这是一个有趣的数学常识,做数学报用上它也很不错。

人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:

12345679*9=111111111

12345679*18=222222222

12345679*27=333333333

……

12345679*81=999999999

这些都是9的1倍至9的9倍的。

还有99、108、117至171。最后,得出的答案是:

12345679*99=1222222221

12345679*108=1333333332

12345679*117=1444444443

… …

12345679*171=2111111109

也是“清一色

4.我对长度的认识

长度的认识量物体的长度要用尺,尺有很多种。 每个同学都有一把直尺,用直尺可以画直线,量长度。 直尺上最小的一小格的长是1毫米。10个小格的长度是1厘米。 1厘米=10毫米 小学生用的三角板的厚度大约是1毫米。你量量看。10个厘米的长是1分米。 1分米=10厘米 比分米长的单位是米,10个分米的长是1米。 1米=10分米售货员量布时用米尺;裁缝做活用直尺和皮尺;木匠做活用直尺和钢尺。这些尺子上都刻有米、分米、厘米、毫米的尺寸。比米还长的单位是公里,1000米就是1公里。 1千米=1000米两地的距离若比较长,通常用公里做长度单位。

例1: 量一量:你的数学课本长多少?宽多少?解:数学课本的长18厘米3毫米,宽13厘米。

例2:填空:1公里=( )米; 1米=( )分米;1分米=( )厘米; 1米=( )厘米;1公里=( )分米=( )厘米;2公里=( )米; 10米=( )厘米;解:1公里=(1000)米; 1米=(10)分米;1分米=(10)厘米; 1米=(100)厘米;1公里=(10000)分米=(100000)厘米;2公里=(2000)米; 10米=(1000)厘米。

5.数学三年级的小常识(我要办个板报)满意的+分

数学小常识

我们都携带一把”尺子”,你相信吗?

新建小学 吴爱萍

你知道吗?我们每个人身上都携带着几把尺子。假如你“一拃”的长度为8厘米,量一下你课桌的长为7拃,则可知课桌长为56厘米。如果你每步长65厘米,你上学时,数一数你走了多少步,就能算出从你家到学校有多远。身高也是一把尺子。如果你的身高是150厘米,那么你抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。要是你想量树的高,影子也可以帮助你的。你只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长*身高÷人影长。这是为什么?等你学会比例以后就明白了。你若去游玩,要想知道前面的山距你有多远,可以请声音帮你量一量。声音每秒能走331米,那么你对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。学会用你身上这几把尺子,对你计算一些问题是很有好处的。同时,在你的日常生活中,它也会为你提供方便的。你可要想着它呀!

6.有关比例尺的有趣的小知识

根据地图的用途,所表示地区范围的大小、图幅的大小和表示内容的详略等不同情况,制图选用的比例尺有大有小。

地图比例尺中的分子通常为1,分母越大,比例尺就越小。通常比例尺大于二十万分之一的地图称为大比例尺地图;比例尺介于二十万分之一至一百万分之一之间的地图,称为中比例尺地图;比例尺小于一百万分之一的地图,称为小比例尺地图。

在同样图幅上,比例尺越大,地图所表示的范围越小,图内表示的内容越详细,精度越高;比例尺越小,地图上所表示的范围越大,反映的内容越简略,精确度越低。地理课本和中学生使用的地图册中的地图,多数属于小比例尺地图。

7.如何测量物体的长度

量物体的长度:

(1)认,就是认识刻度尺.首先,观察它的零刻线是否磨损.其次,观察它的量程和分度值.若零 刻线磨损时,不可再把它的零刻线作为测量的起点,这时可在刻度尺上任选一刻度线作为测量的起点 线. 分度值越小,准确程度越高.测量所能达到的准确程度就是由刻度尺的分度值决定的.

(2)放,即尺的位置应放正.一是使刻度尺的零刻线与被测物体的边缘对齐;二是刻度尺应与被测 物体的边平行,即沿着被测长度;三是对于较厚的刻度尺,应使刻度线贴近被测物体.

(3)看,即视线不能斜歪,视线应与尺面垂直.

(4)读,即读数,除读出分度值以上的准确值外,还要估读出 分度值的下一位数值(估计值) .

(5) 记, 记录测量结果应包括准确值, 估计值和单位. 友情提示:在事先没有给定 刻度尺时,还要根据测量的 要求选择恰当的刻度尺. 时间的单位及换算

注意:

(1)“看“:使用前要注意观察它的零刻线是否完整,量程和分度值

(2)“放“:测量时尺要沿着被测物体,尽量靠近被测物体,不用磨损的零刻线

(3)“读“:读数时视线要与尺面垂直,在精确测量时要估读到最小分度值的下一位.

8.关于数学的小知识

负数的发现

人们在生活中经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。

据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。这些小竹棍叫做“算筹"算筹也可以用骨头和象牙来制作。

我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。"意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异"意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。

我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。"这里的“名"就是“号",“除"就是“减",“相益"、“相除"就是两数的绝对值“相加"、“相减",“无"就是“零"。

用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。"

这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。

用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。

负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。

在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。

除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。

负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。

与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?"他列方程56+x=2(29+x),并解得x=-2。他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。

9.小学数学5个小知识

常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 ) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。

2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。

0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整。

长度小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除