1.有趣的数学知识
数学黑洞行不?数学中的123就跟英语中的ABC一样平凡和简单.然而,按以下运算顺序,就可以观察到这个最简单的 黑洞值: 设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数, 例如:1234567890, 偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个. 奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个. 总:数出该数数字的总个数,本例中为 10 个. 新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510. 重复:将新数5510按以上算法重复运算,可得到新数:134. 重复:将新数134按以上算法重复运算,可得到新数:123. 结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123.换言之,任何数的最终结果都无法逃逸123黑洞.取任意一个4位数(4个数字均为同一个数的除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞6174,至达这个黑洞最多需要7个步骤. 例如: 大数:取这4个数字能构成的最大数,本例为:4321; 小数:取这4个数字能构成的最小数,本例为:1234; 差:求出大数与小数之差,本例为:4321-1234=3087; 重复:对新数3087按以上算法求得新数为:8730-0378=8352; 重复:对新数8352按以上算法求得新数为:8532-2358=6174; 结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞;除了0和1自然数中各位数字的立方之和与其本身相等的只有153、370、371和407(此四个数称为“水仙花数”).例如为使153成为黑洞,我们开始时取任意一个可被3整除的正整数.分别将其各位数字的立方求出,将这些立方相加组成一个新数然后重复这个程序. 除了“水仙花数”外,同理还有四位的“玫瑰花数”(有:1634、8208、9474)、五位的“五角星数”(有54748、92727、93084),当数字个数大于五位时,这类数字就叫做“自幂数”.。
2.求几个有趣的数学知识
关于完全平方数有以下几个特点
完全平方数是这样一种数:它可以写成一个正整数的平方。例如,36是6*6,49是7*7。
从1开始的n个奇数的和是一个完全平方数,即1+3+5+7+…+(2n-1)=n^2;
每一个完全平方数的末位数都是0、1、4、5、6中的一个;
每一个完全平方数要么能被3整除,要么减去1能被3整除;
每一个完全平方数要末能被4整除,要末减去1能被4整除。
每一个完全平方数要末能被5整除,要末加上1或减去1能被5整除……
3.有趣的数学知识是什么
例如:关于完全平方数有以下几个特点
完全平方数是这样一种数:它可以写成一个正整数的平方。例如,36是6*6,49是7*7。
从1开始的n个奇数的和是一个完全平方数,即1+3+5+7+…+(2n-1)=n^2;
每一个完全平方数的末位数都是0、1、4、5、6中的一个;
每一个完全平方数要么能被3整除,要么减去1能被3整除;
每一个完全平方数要末能被4整除,要末减去1能被4整除。
每一个完全平方数要末能被5整除,要末加上1或减去1能被5整除……
4.生活中的趣味数学知识
1.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?
2、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?
3.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?
1
设x名工人生产上衣,得
4x=7*(66-x)
则x=42
所以一天可以生产 4*42=168 套服装
2
设其有x张邮票.得
x/5+N/8+39=x
化简得 4x/5-N/8=39
由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)*8 得4x/5-(2t+1)=39
x=(100+5t)/2
则5t为偶数,再设t=2w,得x=(100+5*2w)/2=50+5w
由此可知,共有50+5w 张邮票, w为0,1,2,3,4,。
此时N=32w+8
3
设有x次考试的成绩,现在的平均分为a.则有
(xa+100)/(x+1)=91
(xa+80)/(x+1)=86
两式相减得20/(x+1)=5
则x=3 a=88
即 现有3次考试的成绩
5.求有趣的数学小故事
(2)高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ 。.. +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ 。.. +96+97+98+99+100
100+99+98+97+96+ 。.. +4+3+2+1
=101+101+101+ 。.. +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
一些国家和民族对某些自然数有特殊的情感,表现出不同的好恶,反映出不同民族的习俗和文化背景,真是一件趣事。
1. “从无到有”与“黑暗”的“一”
中国古人认为,万物均由天地阴阳交感而成,形成了道生一,一生二,二生三,三生天地,天地生阴阳,阴阳生万物的数学关系观。“一”的意义成了“从无到有”,而在3000年前的巴比伦数学中,“1”是一个不祥的数字,1万称为“黑暗”,1万万则是“黑暗的黑暗”。
2. 走向成功的“三”
中国古人认为,“二三”是一个成功的数字。史记云:“数始于一,终于十,成于三”,《老子》则说:“道生一,一生二,二生三,三生万物。”亚里士多德说:“人类所需要的知识有三:理论、使用、鉴别。”法国生物学家巴斯德说:“立志、工作、成功是人类活力的三大要素。立志是事业之门,工作是登堂入室的旅程,旅程的尽头是成功。”法国天文学家戴布劳格林总结自己经验有三大原则:广见闻,多阅读,勤实践。法国文学家卢梭把读书分为三个步骤:储存、比较、批判。陈景润说:“学习要有三心:—是信心,二是决心,三是恒心。”郭沫若期望青年必须具有“三大基础”即思想基础、科学基础和语文基础。
6.数学小知识
这是一个有趣的数学常识,做数学报用上它也很不错。
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是“清一色数学小常识(转载) [ 2007-11-28 12:58:00 | By: gnwz ] 数学小常识1.悖论: (1)罗素悖论 一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。
于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。 1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。
到十九世纪末,全部数学几乎都建立在集合论的基础上了。就在这时,集合论接连出现了一系列自相矛盾的结果。
特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。
此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。 (2)说谎者悖论: “我正在说的这句话是慌话。”
公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是著名的说慌者悖论。
类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”
意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话: 下一句话是慌话。
上一句话是真话。 更有趣的是下面的对话。
甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!” 还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。
一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?” 2.阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符号。
7.有趣的数学小故事
1. 胖子“0”与瘦子“1” 在神秘的数学王国里,胖子“0”与瘦子“1”这两个“小有名气”的数字,常常为了谁重要而争执不休。
瞧!今天,这两个小冤家狭路相逢,彼此之间又展开了一场舌战。 瘦子“1”抢先发言:“哼!胖胖的'0',你有什么了不起?就像100,如果没有我这个瘦子'1',你这两个胖'0'有什么用?” 胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?” “哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!'1+0'还不等于我本身,你哪点儿派得上用场啦?” “去!'1*0'结果也还不是我,你'1'不也同样没用!”“0”针锋相对。
“你……”“1”顿了顿,随机应变道,“不管怎么说,你'0'就是表示什么也没有!” “这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?再比如,直尺上没有我作为起点,哪有你'1'呢?” “再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”
“1”信心十足地说。听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个'0'来占位,你可怎么办?” 眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。
这时,“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,'1'、'0'有哪个数比我大?”“这……”胖子“0”、瘦子“1”哑口无言。这时,“9”才心平气和地说:“'1'、'0',其实,只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。
“这才对嘛!团结的力量才是最重要的!”“9”语重心长地说。 2.蜗牛何时爬上井? 一只蜗牛不小心掉进了一口枯井里。
它趴在井底哭了起来。 一只癞蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。
我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!” 蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!” 蜗牛对癞蛤蟆说: “癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!” 第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。它不停的爬呀,到了傍晚终于爬了5米。
蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。
早上,蜗牛被一阵呼噜声吵醒了。一看原来是癞大叔还在睡觉。
它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。
到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。
你能猜出来,蜗牛需要用几天时间就能爬上井台吗? 3.动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。
蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。
“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。
珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。
天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 4.数学家的遗嘱 阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。
“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢? 5.统计学家的故事 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下四个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写着: “擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次;每个气球的平均寿命。
8.有趣的数学小故事
1.符号“+”“-”是五百年前一位德国人最先使用的。
当时他们并不表示“加上”“减去”。知道三百多年前才正式用来表示“加上”“减去”。
2.“七巧板”是我国古代的一种拼板玩具,有七个块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千。后来传到国外叫做“唐图”。
“七巧板”流传到今天,成为人们喜爱的一种智力玩具。 3.传说早在四五千年前,我们的祖先就用一种滴水的器具来计时,名叫刻漏。
4.乘号“*”是三百多年前一位英国数学家最先使用的。因为乘法是一种特殊的加法,所以他把加号斜过来表示。
5.公元前46年,罗马统帅儒略· 恺撒指定历法。由于他出生在7月,为了表示他的伟大,决定将7月改为“儒略月”,连同所有的单月都规定为31天,双月为30天。
这样一年多出一天,2月是古罗马处死犯人的月份,为了减少处死的人数,将2月减少1天,为29天。6.小方是一个木匠,但他很傲慢,有一天,师傅问他:“桌子有4个角,我砍去一个,还剩几个?”小芳说4-1=3,三个。
师傅告诉他,有5个 大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。
罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。
过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。
教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
小朋友你们可知道数学天才高斯小时候的故事呢? 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。
.. +96+97+98+99+100 100+99+98+97+96+ 。.. +4+3+2+1 =101+101+101+ 。
.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才! 下面就是一个小故事,是一个数字之间的故事。 有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?” 0的兄弟姐妹们一口齐声的说:“好啊。” 8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?” 老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?” 在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗? 唐僧师徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。
师父唐僧问:你们每人各摘回多少个桃子? 八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。
你算算,我们每人摘了多少个? 沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。
你算算,我们每人摘了多少个? 悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。
你算算,我们每人摘多少个? 唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗? 参考资料: 。
9.有趣的数学知识 规律
你好楼主!
给你推荐两个有趣的数学知识规律:
1、自然数中,从1开始,依次序把奇数相加,其和等于奇数个数的平方。例如1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方,……
注:这个规律,是1984年9月至1986年7月,我在四川省达州市达川区教师进修校读书时,偶然发现的。
2、在各位数够减的前提下,任何一个顺着的三位数的顺子数字,减去24,都等于一个倒着的三位数的顺子数字。例如:234-24=210,345-24=321,……789-24=765。
同理,任何一个顺着的四位数的顺子数字,减去246,都等于一个倒着的四位数的顺子数字。例如:4567-246=4321,5678-246=5432,6789-246=6543。
同理,任何一个顺着的五位数的顺子数字,减去2468,都等于一个倒着的五位数的顺子数字。45678-2468=43210,56789-2468=54321。
感谢文/巴山君子兰提供。