1.【写一篇关于数学的小论文,要怎么写啊
你翻看原来的数学英语是很多,但因为现在只是部分联系,并不是全部都有关联,所以要补也不太难,主要是你有恒心坚持.并且你才读初二,要补很容易.我也是个初二的学生.成绩还不错.我有个同学,初一数学中等,在初二猛升到班上第二,把所有同学都吓了一大跳.问他怎么办到的,他说就是上课认真听,回家多做习题,把不会的都弄懂了.你现在不需要把初一全部知识来复习,只要老师教到哪里的相关知识点复习弄懂来,多问问你的家庭老师.多做数学习题是非常重要的.物理说什么和数学关系很大,其实并不是那么大(我也读初二,所以我有切身体会).其实就是关于速度那一节,需要公式计算什么的,之后的光啊力啊,反而和正在学习的初二数学有关,而无关你的"基础不好".但有个很重要的就是,数学主要是一些基本公式,然后多要靠自己去想,你是不是总认为"我基础不好肯定想不出来,即使想出来也要花那么多时间,干脆不想了"?实际物理和数学的关系并不是太大,否则干嘛要把物理叫物理而不和数学合并?数学就是靠多想多扩展.你养成经常思考的习惯,不管想不想得出来,你都要思考,如果一道题目你自己认真想了25分钟以上都想不出来,那就一定要去请教老师,以免浪费时间.数学物理题目都是类型题,掌握基本类型,考试就不会太难.你不要想着飞跃,而要注意当下的进步,即使再微小,也要当作动力坚持下去. 至于英语,主要是基本语感和单词.你注意到没有,一些同学面对一些不太难但没教过的英语题目(比如用TO,FOR,OF,AT,IN这样介词的用法)时,也能够回答正确?这就是靠基本的语感,而语感就围绕"熟能生巧"发展.你需要做的是鼓励自己多听多读多写,要背一些初一的基础语法(初一英语内容不多).同时上课不管听不听得懂都要强迫自己听下去,渐渐就会懂了.(或者是懂多少算多少, 总不可能一节课下来你一丁点也听不懂吧?)还有,单词非常重要.最好把常用的初一学过的单词背熟(少用的就不用了,浪费时间),再把现在书本的词语背好,渐渐就会减小差距,将水平拉上,提高成绩了. 至于痴迷网络,这是别人无法帮助到的,只能靠自己了.可以用"切断后路"的方法.就是把家里电脑宽带退掉,把多余的钱交给父母保管,防止忍不住跑去网吧,久了就会淡了.初一暑假那会我迷得可厉害了,最后渐渐淡了,现在也不太在意了.真的,什么事情时间久了,就不会那么在意了.如果是舍不得游戏,那就别玩,卖号什么的,要狠下心来. 篮球可以打啊,注意时间.放学打打就好,别花太多时间在上面.因为篮球是运动,对身体好,再说男生都爱玩篮球的嘛.。
2.求2篇数学小论文做示范、
数学王国奇遇记
2999年,世界上诞生了一双什么地方都能去的鞋子,这双鞋子以抽奖的形式赠出,幸运的小叮当成了这双鞋子的拥有者。
一天小叮当想到数学王国去转一转,便穿上鞋子,开始了数学旅行。
奇怪的算式
小叮当来到了数学王国,大门却禁闭着,门上写着一些奇怪的算式:2*2=2,6*3=3,6*6*6=5,(63+2)*7=237,26*57=?(+、-、*、÷、( )、=的意义不变)。算式下写着:请算出26*52的答案,若答案正确,大门将自动打开。小叮当随即调动了全身的数学细胞想起来:由6*6*6=5可知6=2,5=8。由6*3=3知3=0。由2*2=2,可知2=1,继而推出7=5。于是,可知26*57=12*85,12*25=1020,1020=2363。小叮当拿起地上放着的一支粉笔,在等于号后面写上了2363。这时,大门缓缓地打开了……
进入王国的楼梯
小叮当慢慢地走进去,映入眼帘的是12级楼梯,刚踏上第1级楼梯时,一个小女孩出现了。小女孩对小叮当说:“你好,欢迎你来到数学王国,我叫小灵通,恭喜你答对了大门上的题目。你只要答对我出的题目就能进入问题市。现在请听题:从大门到问题市的入口共有12级楼梯,如果每步只能登上1级或2级楼梯,那么,一共有多少种走法?”小叮当想了一会儿,就报出了答案:233种。小女孩听了,满意地点了点头,交给小叮当一把钥匙,就消失了。小叮当用钥匙打开了问题市的大门。同学们你们知道小叮当是怎样算出来的吗?不妨也做一做。(从简单入手,设有2级楼梯,则有2种不同走法;3级楼梯,有3种不同走法;4级楼梯,有5种不同走法;5级楼梯,有8种不同走法;6级楼梯,有13种不同走法 ……后一级走法是前两级走法的和)
慈善家的谎言
小叮当在问题市漫步,不知不觉已经来到了问题市的市中心。一位“慈善家”正在广场上演讲自己的善行:“为了帮助孤儿院的那些可怜的孩子们养成良好的行为习惯,我设立了专项基金奖励其中表现杰出者。就在上个星期,我奖给了其中的10名儿童共50枚金币,当然,由于他们的表现不同,他们所得的金币数也各不相同。”这时,小叮当走上讲台,大声说:“他在说谎!假设最少的一位得到了1枚金币,那么,这笔奖金的最少数目应该为1+2+3+4+5+6+7+8+9+10=55(枚),与‘慈善家’说的矛盾,所以,‘慈善家’在说谎。”这时,小叮当被一位卫兵带到了王宫里。
国王的接见
小叮当被卫兵带到了一间墙壁上满是数学公式的宫殿里,这时头戴皇冠、身着披风的国王出现在小叮当的面前,国王递给他一本书,书上只有一句话:学好数学并不难,只要你肯动脑,愿探索,就能有所发现。国王说:“希望你能留下来,为数学事业作出贡献。”
小叮当答应了,有了书上那句话的鞭策,小叮当的确有所发现。
同学们,你们就是未来的小叮当,请你们努力吧!
3.学生的数学小论文
走进新课程的今天,写数学小论文作为一种学习方式,已逐渐被广大教育工作者认可。所谓数学小论文是指学生在数学学习中所习写的以数学内容为中心的短小文章,其文体形式包括数学日记、数学故事、数学童话等。其中,数学日记是学生以日记的形式,记述自己学习和应用数学知识的过程、感受和体会;数学童话、数学故事是指学生将所学的数学知识,依据自己的理解有机地融合于故事、童话的框架中,以形成完整的情节。近年来,结合课堂教学实际,我校对小学生如何写数学小论文,进行了一些探索,采取了一些做法,收到了理想的教学效果。
1.培养学生数学阅读的习惯
数学阅读是指围绕数学问题或相关资料,以数学思维为基础和纽带,用数学的方法、观念来任知、理解、汲取知识和感受数学文化的学习活动。最初,我们从网上、报刊上找来一些优秀的学生日记,让学生阅读,了解数学日记的格式与内容的选择,激发学生的撰写热情。后来,结合学校读书活动,每学期里组织学生相互推荐优秀数学科普读物。如:《生活中的数学》、《十万个为什么(数学卷)》、《数学万话筒》……同时,每学期开展丰富多彩的阅读展示活动:学生自编的一张张五彩斑斓的“数学手抄报”、一本本价值连城的“数学剪贴本”、一块块内容丰富的黑板报……带领学生在阅读中走进数学的世界,体会数学的魅力。激发学生的写作热情。
2.提高学生自我反思的能力
数学小论文是学生自我评价的需要方式之一。反思型论文可以根据自己的数学作业或试卷以及课堂中的表现,对解决某个问题所采用方法的优劣进行自我反思,认识自我,澄清有关问题,从而为充满信心地继续学习数学打好基础。每个星期要求学生对一周来的数学学习情况以数学日记的形式表达出来,教师对学生能够撰写的数学日记及时地进行反馈和交流,让每个学生都有机会在全班同学前朗读自己的日记。这样有利于学生取长补短,提高数学交流能力,增强其自信心。长期以往,使学生养成自我反思的习惯,提高数学学习中的认知水平,增强他们自我反思的能力。
3.撰写教师下水文
数学小论文不能满足于数学反思日记,而要将视野开阔。“教师应该充分利用学生已有的生活经验,指导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。”开始,学生不明白如何将数学知识、数学问题融于故事情节中,如何观察生活中的数学知识。教师要站在学生的角度考虑问题,写反文,读给学生听,并带学生分析:哪些地方应用了数学知识?是怎么应用的?还可以应用哪些数学知识、续编哪些故事情节?学生模仿练写数学小论文,逐步养成了从数学的角度观察生活的习惯,为数学学习积累了丰富的感性经验。在为数学小论文撰写而进行的调查活动中,还培养了学生事事心中有数学的节约、环保等意识和强烈的社会责任感。同时,也提高了数学教师的写作能力。一年多下来,我校教师撰写的数学小论文在国家级、省级刊物上发表几十篇。
4.组织学生踊跃参赛和投稿
苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者。而在儿童的精神世界中,这种需要特别强烈。”写数学小论文可以使不同层次的学生得到发展,使每位学生体验到数学学习与交流表达的欢乐、成功,激发他们的数学学习热情。平时,我校的老师能及时指导、修改有一定思想内容的日记组织学生投稿、参加一些数学小论文评比活动。当看到了他们最灿烂、最自信的笑容,那时的情景会令他们终身难忘。
我们欣喜地发现,让学生写好数学小论文,提高了学生对数学来源于生活的认识,唤起了学生亲近数学的热情,体会数学与生活同在的乐趣,远比在书本中“咬文嚼字”学习数学来得更生动、更深刻,从而有力地促进学生的数学学习,推动学生综合素质的发展。
4.数学小论文,2000字以上 急
精彩回答检举| 2011-05-27 22:24数学是研究数量、结构、变化以及空间模型等概念的一门学科。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。
虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。
数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。
布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。数学分类 符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。
此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。
在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。
它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。
亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。
但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。
严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。
这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。
牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。
当大量的计量难以被验证时,其证明亦很难说是有效地严谨。中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。
在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。
他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。
他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖暅原理;提出二次与三次。
5.小学数学小论文2篇和小学数学阅读笔记3篇
数学小论文2篇《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。
这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。
其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。
所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”
这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。
而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。
一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。
从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 小学数学阅读笔记3篇数学家的眼光》读书笔记 《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。
《数学家的眼光》被中外专家誉为是一部具有世界先进水平的科普佳作。 数学家的眼光和普通人的眼光不同:在常人看来十分繁难的问题,数学家可能觉得很简单;常人觉得相当简单的问题,数学家可能认为非常复杂。
张景中院士从中学生熟悉的问题入六,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。 《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。
《数学家的眼光》被中外专家誉为是一部具有世界先进水平的科普佳作。 数学圈》的序中写道:去吧,那些被课本和考卷异化和扭曲了的数学,忘记那一朵恶之花,我们会迎来新的百花园。
……宣扬数学和数学家的思想和精神。目的不是教人学数学,而是改变人们对数学和数学家的看法,把数学融入大众文化,回到人们的生活。
带着一点儿文艺欣赏的平和,你可以怀着360样心情来享受数学,经历它的趣味和生命,感悟符号后面的情感和人生。……从人数来说,数学家在文化人中顶多占一个测度为0的空间。
但是,数学的每一点进步都影响着整个文明的根基。……“有谁知道,在微积分和路易十四时期的政治的朝代原则之间,在西方油画的空间透视和以铁路、电话、远距离武器制胜空间之间,在对位音乐和信用经济之间,原有深刻一致的关系呢?”……当你发现一个小公式也象一首小诗那么多情的时候,还忍心把它忘记吗?数学的生活很简单。
它没有圆滑的道理,也不为模糊的借口留下一点儿空间。数学生活也浪漫。
艺术家的想象力令人羡慕,而数学家的想象力更多。希尔伯特说过,如果哪个数学家一旦改行作了小说家(真的有),我们不要惊奇——因为拿人缺乏足够的想象力做数学家,却足够做一个小说家。
懂一点数学的伏尔泰也感觉,阿基米德头脑的想象力比荷马的多。数学是明澈的思维。
有数学思维的人多了,(特别是那些穿戴科学外衣的骗子)的空间就小了。无限的虚幻能在数学找到最踏实的归宿。
数学是奇异的旅行。……数学是纯美的艺术。
数学的世。
6.急需一篇初中科普读物的书评和一篇数学小论文`
“科学的灵感,决不是坐等可以等来的。
如果说,科学上的发现有什么偶然的机遇的话,那么这种“偶然的机遇”只能给那些学有素养的人,给那些善于独立思考的人,给那些具有锲而不舍的精神的人,而不会给懒汉。” ---华罗庚(中国)确实,科学的普及,不是坐等能等来的,必需要付出汗水与努力,而对于我们这样一群学生,显然没有那么多的时间去研究科学,去了解科学,那么我们怎样才能接近科学了解科学呢?我把汗水撒给了《学生探索百科全书》。
“思维是地球上最美丽的花朵”,而探索精神是其中最灿烂的一枝。千百年来,人类用孜孜不倦的求索精神,不断扩展着对神气大自然,对奇妙的科学以及对人类自身的认识。
在永不停顿的对未知领域的探究中,人类建构起了多姿多彩的迷人世界。地外文明真的存在吗?动物为什么要冬眠?哥德巴赫猜想是什么回事?我们能不能跨越时空?这些问题一直伴随着我,为了解开这些我不懂的“迷”我选择了《学生探索百科全书》,我希望它可以给我带来这些我不懂得的问题的答案。
这本《学生探索百科全书》共分为三章——自然探索、科学探索和历史探索。三章的排版都做的很好,让读者很容易便可以找到自己感兴趣的知识,三章都按照各自的特点分为若干节,各节在结构设计上均采用场面宏大的主图以及精彩纷呈的配图以增强视觉冲击力,让读者在准确的文字描述、严谨的原理揭示中愉快地踏上新奇的探索之旅,轻松地掌握的百科知识。
读过这本书之后我深深感受到了它对我带来的好处。首先我在第一章的自然探索中,我了解了来自宇宙深处的信息、漫长的生命之旅、“自由号”卫星的惊人发现……等等等等,这些知识无一不丰富了我的知识,让我的生活更加充实,并且在遇到危险的时候可以用这些书上看到的自然知识来保护自己,这书呀!真好!在第二章的科学探索中,我了解了无处不在的黄金分割、四色之迷、寻找“幽灵粒子”、我们能不能穿越时空……等等等等,这些知识又是我了解到了科学,学会了科学的方法,科学的理论,科学的发展,科学的分析这些重要的东西,并且在日常生活中遇到的一些奇闻异事我也可以通过科学说法来解答他,这些知识都丰富了我的生活经验,让我不断的健康成长。
在第三章的历史探索中,我了解到了丝绸之路、奥林匹克运动会的起源、埃及艳后、金字塔工程……等等等等。历史使人明智,因为了解历史,可以学习前人的正确做法,并且改到自己的错误作风,这样可以使人们在成功的路上少一些坎坷,为自己铸造一条平平的道路。
看吧!一本知识读物给我们带来了多么大的益处,在这个讲究科学的时代,如果我们不多学习一些有关科学的知识的话,我们肯定会被这个时代所渐渐的遗忘,我们只会一点一点的落后,选择一本好的科普类读物吧,相信它会给你带来意外的收获!生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。
奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。
音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。
优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。
为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。
或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还。
7.有关数学的小论文
篮球场上的数学 一个星期天的早晨,我和我的朋友一起去打篮球。
过了一会儿,我们俩打累了,就到观众席上去休息。突然间,我想到了一个问题,我就禁不住说出来:“小明一分钟投8个球,小红一分钟投6个球,他们一起投了8分钟之后,小红提高命中率一分钟投8个球,小明由于体力不支减少投球只数一分钟投6个球,问多少分钟后小红和小明投进的只数相同?” 大概是我朋友太累的缘故,这么简单的问题他都答不上来,他想了一会儿没做出来,过了好长时间他还是没想出来。
时间一分一秒的过去了,他实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算他有草稿也未必做得出来。
我自豪地说:“原来小明一分比小红多投进2个,一共投了8分钟,也就是8*2=16(个),后来小红反过来每分比小明多投4个,那么16个球要多投几分钟呢?16÷4=4(分),要4分钟才能追上。”他说:“你真厉害!”“我是天才嘛!”我开玩笑说。
我俩都笑了。 通过这件事,我发现生活中的数学是无处不在,生活中、学习中、还有工作中到处都有。
从此,我就更加喜欢数学了。
8.跪求一篇关于数学的450字小论文
写图形比较好吧 圆和三角形小学学过吧
生活中的几何图形
在这个科技高速发展的时代中,几何图形已经成了生活中的”常客”,处处都有几何图形的身影,比如说:三角形的自行车架,圆形的窨井盖和汽车轮子,圆柱型的花盆等等,这种种说明几何图形与我们的生活是息息相关的,是不可分割的。
圆形的窨井盖
圆形的窨井盖中就应用到了许多数学知识:
1. 我们学到过在周长相等的情况下,圆的面积最大,所以窨井盖也是用了这一原理,所以说,圆形的窨井盖所用的材料是最少。
2. 圆有一个圆心,在圆内,直径都相等,而正方形的对角线与边长是不相等的,所以圆的承受力是最大的。
3. 圆形的窨井盖还有便于运输的优点。
看来,圆形的窨井盖有很多好处,所以人们才会这么做啊。
三角形自行车架
自行车架为什么是三角型的?其实其中也有许多奥妙:
1. 三角形有一种特性,就是三角形稳定性。
任取三角形两条边,则两条边的非公共端点被第三条边连接 。
∵第三条边不可伸缩或弯折 。
∴两端点距离固定 。
∴这两条边的夹角固定 。
∵这两条边是任取的 。
∴三角形三个角都固定,进而将三角形固定 。
∴三角形有稳定性 。
任取n边形(n≥4)两条相邻边,则两条边的非公共端点被不止一条边连接 。
∴两端点距离不固定 。
∴这两边夹角不固定 。
∴n边形(n≥4)每个角都不固定,所以n边形(n≥4)没有稳定性。
因此,使用三角形的自行车架,可以起到稳定的作用。
由几何图形构成的商标
在生活中,也有许多由几何图形构成的商标。例如奥迪 雪佛兰 宝马等等。看来,在生活中几何图形的应用真是无处不在。
人们利用几何图形的种种特性来方便我们生活。就如罗丹说的:“生活中不是没有美,而是缺少发现美的眼睛”。所以,生活中不是没有数学,而是看你有没有去发现它了。
作文因人而异,你可以修改一下。
希望我的回答能够帮到你!
9.生活中的数学小论文
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。