关于有理数的小知识

2022-04-18 综合 86阅读 投稿:倦与恋

1.请具体总结初一上学期数学第二章有理数的所有知识点,一定要详细

1、数0既不是正数,也不是负数;2、0是正数与负数的分界;3、海拔0表示海平面的平均高度;4、正数负数表示两种相反意义的量。

相反意义的量是成对出现的。5、具有相反意义的量,只要求意义相反,而不要求数量一定相等;6、用正数和负数表示具有相反意义的量时,一定要说明数量的单位,且量为同一类型的量;7、判断一个数是不是负数,一是看其前面有没有负号,二是看负号后面的数是不是正数(即只有在正数前面带负号的数才是负数);8、带负号的数不一定是负数;9、正数大于0, 0大于负数,正数大于负数;有理数1、负数也有奇偶之分;2、有限小数与无限循环小数是有理数,而无限不循环小数因为不能化为分数所以不是有理数;3、不管是哪种分类,有理数最终都可分为正整数、0、负整数、正分数、负分数五类;4、正(负)有理数均为正(负)数,但正(负)数不一定都为正(负)有理数;5、数集中填数时,数与数之间要用逗号隔开,还要加省略号;数轴1、数轴的三要素:原点、正方向、单位长度;2、有理数均可以用数轴上的点表示,但数轴上的点所表示的数不一定均是有理数;3、数轴上,右边的数总比左边的数大;相反数1、互为相反数的两个数在数轴上对应的两个点到原点的距离相等;2、一个数和它的相反数不可能相等(错);3、相反数是成对出现的;4、只有0的相反数是它本身,除0以外互为相反数的两个数都是一正一负;5、相反数的几何意义:互为相反数的两个数在数轴上对应的两个点,到原点的距离相等且位于原点的两侧,反之,位于原点两侧且到原点距离相等的两个点所表示的两个数互为相反数;6、互为相反数的两个数在数轴上对应的点关于原点对称;7、相反数的代数意义:互为相反数的两个数除符号不同外,其余都相同;8、只有符号不同的两个数互为相反数;9、一个数的相反数的相反数是它本身;10、只要在一个数的前面加“-”号,即可得到这个数的相反数;11、若a、b互为相反数,则a+b=0;绝对值1、一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;2、两个负数,绝对值大的反而小;3、任何一个数的绝对值都大于或等于0(非负性);4、任何数都有绝对值,且只有一个;5、0是绝对值最小的数;6、绝对值是正数的数有两个,且它们互为相反数;7、互为相反数的两个数绝对值相等,反之,绝对值相等的两个数可能相等,也可能互为相反数;8、正数的绝对值是正数(错);9、|a|表示一个非负数(|a|0);10、任何数的绝对值都不小于原数;11、绝对值相等的两个数,它们相等或互为相反数;12、若几个非负数的和为0,那么这几个非负数同时都为0;(例如|a|+|b|=0,则a=0,b=0)13、|a|= 14、若|-x|=3,则x=3;有理数的加法1、同号两数相加,取相同的符号,并将绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;3、一个数同0相加,仍得这个数;4、两个加数的和不一定大于其中的每一个加数;有理数的减法1、减去一个数,等于加上这个数的相反数;2、0减去任何数,得这个数的相反数;3、两个数的差,不一定小于这两个数的和;4、较小的数减去较大的数,差一定是负数;5、若两个有理数的绝对值的差是0,则这两个数相等或互为相反数;6、两个有理数的差是正数,则被减数大于减数;有理数的乘法1、两数相乘,同号得正,异号得负,并把绝对值相乘;2、任何数同0相乘,都得0;3、一个数乘1等于它本身,一个数乘“-1”等于它的相反数;4、乘积是1的两个数互为倒数,乘积是“-1”的两个数互为负倒数;5、倒数是它本身的数只有;6、0没有倒数;7、ab>0,则a与b同号;ab8、几个数相乘,若其中一个因数为0,则积等于0;反之,若几个数的积为0,则至少有一个因数为0;9、几个不为0的数相乘,负因数个数是偶数时,积是正数;负因数个数是奇数时,积是负数。

有理数的除法1、除以一个不为0的数,等于乘这个数的倒数;2、两数相除,同号得正,异号得负,并把绝对值相除;3、0除以任何一个不为0的数,都得0;有理数的乘方1、负数的奇次幂是负数,负数的偶次幂是正数;2、正数的任何次幂都是正数,0的任何正整数次幂都是0;3、任何数的偶次幂都是非负数;4、平方等于它本身的数只有0和1;立方等于它本身的数只有0和;5、= , = , 06、有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行; 我也是摘抄的。

2.初一上册数学知识点

初一数学上册复习教学知识点归纳总结 一:有理数 知识网络:概念、定义:1、大于0的数叫做正数(positive number)。

2、在正数前面加上负号“-”的数叫做负数(negative number)。3、整数和分数统称为有理数(rational number)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。9、两个负数,绝对值大的反而小。

10、有理数加法法则 (1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。13、有理数减法法则 减去一个数,等于加上这个数的相反数。

14、有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则 除以一个不等于0的数,等于乘这个数的倒数。20、两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。

在an 中,a叫做底数(basenumber),n叫做指数(exponeht)22、根据有理数的乘法法则可以得出 负数的奇次幂是负数,负数的偶次幂是正数。显然,正数的任何次幂都是正数,0的任何次幂都是0。

23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。24、把一个大于10数表示成a*10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit) 注:黑体字为重要部分 二:整式的加减 知识网络:概念、定义:1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数(coefficient)。3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

三:一元一次方程 知识网络:概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。6、把等式一边的某项变号后移到另一边,叫做移项。

7、应用:行程问题:s=v*t 工程问题:工作总量=工作效率*时间 盈亏问题:利润=售价-成本 利率=利润÷成本*100% 售价=标价*折扣数*10% 储蓄利润问题:利息=本金*利率*时间 本息和=本金+利息 三:图形初步认识 知识网络:概念、定义:1、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。4、将由平面图形围成的。

3.七年级数学上册知识点归纳

七年级(上)数学知识点归纳与总结一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数.知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.知识点4:绝对值的概念:(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.知识点11:乘法与除法1.乘法法则 2.除法法则3.多个非零的数相乘除最后结果符号如何确定知识点12:倒数1.倒数概念2.如何求一个数的倒数?(注意与相反数的区别)知识点13:乘方1.乘方的概念,乘方的结果叫什么?2.认识底数,指数3.正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________知识点14:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.知识点15:科学记数法科学记数法的概念?注意a的范围(人教)。

4.初一上数学知识点

绝对值大的正数大;两个负数:

(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2) 代数意义:混合计算

注意:运算顺序是关键,计算时要严格按照顺序运算。

知识点6:有理数大小的比较。0的相反数是0。

数轴上有理数大小的比较:倒数

1识点1:正、负数的概念:我们把像3、2、+0.03%这样的数叫做正数:

注:有限小数和无限循环小数都可看作分数。

知识点3、-2、-0,绝对值大的负数反而小。

知识点7.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量;像-3,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时;绝对值不等时,取绝对值较大的加数的符号:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2) 代数意义。

知识点2:有理数的概念和分类:整数和分数统称有理数,零的任何次幂________

负数的偶次幂是_________奇次幂是________

知识点14,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8,它们都是比0大的数,先把前两个数相加,或者先把后两个数相加:符号不同但绝对值相等的两个数叫做互为相反数:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律.5,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

知识点11: 乘法与除法

1:减去一个数。

知识点10:绝对值的概念:

(1) 几何意义。

用绝对值进行有理数大小的比较:两个正数,等于加上这个数的相反数,和不变、-0:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:

有理数大小比较的基本法则:正数都大于零.考试经常考带乘方的计算,和为0?(注意与相反数的区别)

知识点13:乘方

1. 乘方的概念。有理数的分类主要有两种。

知识点9:数轴的概念:在数轴上表示的两个数,右边的数总比左边的大:

(1)同号两数相加:有理数加法法则:一个正数的绝对值是它的本身:有理数加减混合运算.5,负数都小于零,正数大于负数:三个数相加,乘方的结果叫什么?

2. 认识底数,指数

3. 正数的任何次幂是_________:有理数减法法则、0. 倒数概念

2. 如何求一个数的倒数.乘法法则

2.除法法则

3.多个非零的数相乘除最后结果符号如何确定

知识点12:根据有理数减法的法则,一切加法和减法的运算;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5:相反数的概念

5.初中数学实数知识点总结

数与代数A:数与式:1:有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴 ②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0.两个负数比较大小,绝对值大的反而小.有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变.减法:减去一个数,等于加上这个数的相反数.乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数.除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数.混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的.2:实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数.立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数/0的立方根是0/负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数.实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示.3:代数式代数式:单独一个数或者一个字母也是代数式希望对你有帮助。

6.小学的数学知识点总结归纳

1、数与代数:数的认识、数的运算、式与方程、比和比例。

2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。

4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。扩展资料:整数1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。

3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。

在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。

0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

32、一天的时间:一天有24小时,一小时60分,1分60秒 参考资料来源:百度百科-小学数学知识 参考资料来源:百度百科-小学数学。

7.数学小知识

这是一个有趣的数学常识,做数学报用上它也很不错。

人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 这些都是9的1倍至9的9倍的。

还有99、108、117至171。最后,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是“清一色数学小常识(转载) [ 2007-11-28 12:58:00 | By: gnwz ] 数学小常识1.悖论: (1)罗素悖论 一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。

于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。 1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。

到十九世纪末,全部数学几乎都建立在集合论的基础上了。就在这时,集合论接连出现了一系列自相矛盾的结果。

特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。

此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。 (2)说谎者悖论: “我正在说的这句话是慌话。”

公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是著名的说慌者悖论。

类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”

意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话: 下一句话是慌话。

上一句话是真话。 更有趣的是下面的对话。

甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!” 还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。

一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?” 2.阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

现在,阿拉伯数字已成了全世界通用的数字符号。

8.数学趣味小知识 简短的 20到50字左右

趣味数学小知识

数论部分:

1、没有最大的质数。欧几里得给出了优美而简单的证明。

2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。

拓扑学部分:

1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。

3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,

摘自:/bbs2/ThreadDetail.aspx?id=31900

关于有理数的小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除