有趣的天体科普小知识

2022-03-19 综合 86阅读 投稿:坠雨痕

1.有趣的天文科学小知识有哪些

有趣的天文科学小知识有光年是距离单位、太阳的颜色、太阳系中表面温度最高的行星、太阳系中表面风速最快的行星、太阳系中度日如年的行星。

1、光年是距离单位

光年是天文大尺度距离单位,并非时间单位。鉴于光速在真空中不受惯性系和参考系限制而恒定不变的性质,人类把光速作为衡量距离的精准单位,还有一种含义,因为“光年”包含“年”这个字,而年通常是时间单位。

一光年就是光运行一年的距离,科学界把这个年定义为儒略年:365.25年;这样一光年精确的距离为:9460730472580800m,通俗来讲,一光年大概是:9.46万亿公里。目前人类最远探测器是于1977年发射的旅行者一号距离地球约216亿公里,也只有一光年的0.22%。

2、太阳的颜色

太阳真正的颜色是白色。我们之所以把太阳看成黄色,是因为地球的大气层更不容易将高波长的颜色,比如红色、橘色和黄色,散射出去。

因此,这些波长的颜色就是我们看到的,这也就是太阳呈现出黄色的原因。要是离开地球在太空中看太阳的话,就会发现太阳真正的颜色是百色(小编也没看过,不知道会不会发现眼睛已经被闪瞎)。

3、太阳系中表面温度最高的行星

太阳系中表面温度最高的行星不是距离太阳最近的水星,而是金星。水星虽然距离太阳最近,但是水星表面温度在白天可以达到427℃,而金星由于有着浓密的二氧化碳气体,导致强烈的温室效应。

其表面温度最高可以达到500℃,就算在金星夜晚也有400多℃,使得金星表面平均温度有400多℃以上。顺便说下,水星因为其夜间温度可以下降至-183℃,使得水星是太阳系中表面温差最大的行星,表面昼夜温差高达600℃。

4、太阳系中表面风速最快的行星

海王星大黑斑是出现在海王星上的暗斑,如同木星的大红斑一样。它在1989年被NASA的航海家2号太空船检测到,虽然他似乎与木星的大红斑一样,但它是个反气旋风暴,它被相信是个相对来说没有云彩的区域。

这个斑点的大小与地球近似,并且非常像木星上的大红斑。起初认为它是与大红斑一样的风暴,但更接近的观察显示它是黑暗的,并且是向海王星内部凹陷的椭圆形。

围绕在大黑斑周围的风速经测量高达每时2400公里(1500英里),是太阳系中最快的风,大黑斑被认为是海王星被甲烷覆盖时产生的一个洞孔,类似于地球上的臭氧洞。

5、太阳系中度日如年的行星

金星的公转周期是224.7个地球日,而自转周期是243个地球日,也就是说金星的一天要比一年长18个地球日,在哪里是名副其实的“度日如年”。

至于原因还没有定论,不过有一点需要注意的是,金星是太阳系中唯一一个逆向自转的大行星,自转方向是自东向西,也就是说在金星上看太阳是西升东落。

2.宇宙科学小知识

银河系中的恒星

整个银河系约有2000亿颗恒星。天文学家根据这些恒星的年龄大小不同,将它们分成两大星族:星族I与星族II。星族I是一些年轻的恒星,多分布在银盘的旋臂附近,星族II是一些年老的恒星,多聚集在银核及银晕中。

在银河系里,既有许多如巨星、矮星、变星等单个出现的恒星,也有许多成双成对出现的恒星双星。除双星外,银河系中还可看到由两颗以上的恒星组成的聚星。如双子座的北河二是六合星,半人马座的南门二是三合星。由 10个以上的恒星组成的星团也是银河系里的重要成员。

3.恒星的天文科学小知识有哪些

恒星的知识 恒星是由炽热气体组成的,是能自己发光的球状或类球状天体。

由于恒星离我们太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体。我们所处的太阳系的主星太阳就是一颗恒星。

1.1恒星演化 恒星结构恒星都是气体星球。晴朗无月的夜晚,且无光污染的地区,一般人用肉眼大约可以看到6000多颗恒星。

借助于望远镜,则可以看到几十万乃至几百万颗以上。估计银河系中的恒星大约有1500-2000亿颗。

恒星的两个重要的特征就是温度和绝对星等。大约100年前,丹麦的艾依纳尔·赫茨普龙(Einar Hertzsprung)和美国的享利·诺里斯·罗素(Henry Norris Russell )各自绘制了查找温度和亮度之间是否有关系的图,这张关系图被称为赫罗图,或者H—R图。

在H-R图中,大部分恒星构成了一个在天文学上称作主星序的对角线区域。在主星序中,恒星的绝对星等增加时,恒星的演变其表面温度也随之增加。

90%以上的恒星都属于主星序,太阳也是这些主星序中的一颗。巨星和超巨星处在H—R图的右侧较高较远的位置上。

白矮星的表面温度虽然高,但亮度不大,所以他们只处在该图的中下方。1.2恒星演化 恒星在其生命期内(发光与发热的期间)的连续变化。

生命期则依照星体大小而有所不同。单一恒星的演化并没有办法完整观察,因为这些过程可能过于缓慢以致于难以察觉。

因此天文学家利用观察许多处于不同生命阶段的恒星,并以计算机模型模拟恒星的演变。 天文学家赫茨普龙和哲学家罗素首先提出恒星分类与颜色和光度间的关系。

恒星——赫罗图系,建立了被称为“赫-罗图的”恒星演化关系,揭示了恒星演化的秘密。“赫-罗图”中,从左上方的高温和强光度区到右下的低温和弱光区是一个狭窄的恒星密集区,我们的太阳也在其中;这一序列被称为主星序,90%以上的恒星都集中于主星序内。

在主星序区之上是巨星和超巨星区;左下为白矮星区。1.3恒星形成 在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。

这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。

当物质的线度收缩了几个数量级后,情况就不同了,一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。 星坯的力学平衡是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。

这一热学上趋向平衡的自然倾向对力学起着削弱的作用。于是星坯必须缓慢的收缩,以其引力位能的降低来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。

这就是星坯演化的主要物理机制。 最新观测发现S1020549恒星下面我们利用经典引力理论大致的讨论这一过程。

考虑密度为ρ、温度为T、半径为r的球状气云系统,气体热运动能量:ET= RT= T (1) 将气体看成单原子理想气体,μ为摩尔质量,R为气体普适常数。为了得到气云球的的引力能Eg,想象经球的质量一点点移到无穷远,将球全部移走场力作的功就等于-Eg。

当球质量为m,半径为r时,从表面移走dm过程中场力做功:dW=- =-G( )1/3m2/3dm(2) 所以:-Eg=- ( )1/3m2/3dm= G( M5/3。于是:Eg=- (2)。

气体云的总能量: E=ET+EG (3)。灵魂星云将形成新的行星热运动使气体分布均匀,引力使气体集中。

现在两者共同作用。当E>0时热运动为主,气云是稳定的,小的扰动不会影响气云平衡;当E<0时,引力为主,小的密度扰动产生对均匀的偏离,密度大处引力增大,使偏离加强而破坏平衡,气体开始塌缩。

由E≤0得到产生收缩的临界半径:(4) 相应的气体云的临界质量为:(5) 原始气云密度小,临界质量很大。所以很少有恒星单独产生,大部分是一群恒星一起产生成为星团。

球形星团可以包含10^5→10^7个恒星,可以认为是同时产生的。 我们已知:太阳质量:MΘ=2*10^33,半径R=7*10^10,我们带入(2)可得出太阳收缩到今天这个状态以释放的引力能。

太阳的总光度L=4*10^33erg.s-1如果这个辐射光度靠引力为能源来维持,那么持续的时间是:很多证明表明,太阳稳定的保持着今天的状态已有5*10^9年了,因此,星坯阶段只能是太阳形成像今天这样的稳定状态之前的一个短暂过渡阶段。这样提出新问题,星坯引力收缩是如何停止的?此后太阳辐射又是以什么为能源?1.4恒星稳定期 主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。

如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原。

4.宇宙科普知识 宇宙科普知识

围绕一个问题弄得哦,够不? 宇宙知识——宇宙在膨胀吗? 夏日夜空,繁星闪烁,不禁使人陷入对宇宙的遐想之中。

20世纪10~20年代,天文学家发现远星系光谱线的频率随着它离我们距离的远近而有规律地变比,即谱线红移。1929年哈勃总结出谱线红移的规律是:对遥远星系,红移量与星系离我们的距离成正比,比例系数H叫哈勃常数,这红移叫宇宙学红移。

此后,在红外及整个电磁波波段都观测到了这个规律。它被解释为是由星系系统地向远离我们的方向运动时的多普勒效应产主的。

这就像火车远离我们行驶时汽笛的声调(即频率)比静止不动时的声调更低一样,由此得出星系都在做远离我们的运动,离我们越远运动速度越快的结论。这就好像是掺有葡萄干的面包在烤箱中膨胀起来一样。

这个模型叫宇宙膨胀模型或大爆炸模型。近年来在宇宙膨胀的基础上又提出了爆胀宇宙等多种改进模型。

从宇宙膨胀的观点出发,利用哈勃公式反推到过去宇宙中所有天体应该聚集于一点,由于某种原因在它内部产生了"大爆炸"。诞生了现在的宇宙,从而得出了时间是有开端,空间是有限的结论。

宇宙从大爆炸到现在究竟经过了多少时间,即宇宙的年龄是多少,这取决于哈勃常数H的大小。最初哈勃常数仅500(公里/秒/百万秒差距),这样算出的宇宙年龄比地球的45亿年的年龄小很多。

以后改为50~100之间。若取100,宇宙的年龄只有100亿年,而银河系的球状星团的年龄是150亿年,矛盾很大。

若取50,宇宙年龄为200亿年,矛盾不那么明显,因此被大爆炸宇宙论者所赞同,但在观测上,这个数值有些勉强。究竟是多少,一直没有定论。

近年来用哈勃太空望远镜观测的结果倾向于取80。这样算出的年龄为120亿年,矛盾还很明显。

宇宙将来是一直膨胀下去还是又收缩回来,这要取决于宇宙的平均密度。而宇宙平均密度究竟是多少目前还不能确定,因为观测的距离越远,平均密度越小,下限有没有还不能确定。

1965年发现了宇宙空间的2.7K微波背景辐射,被大爆炸论者解释为大爆炸时期的光经过上百亿年后的遗迹,是大爆炸宇宙的一大证据,但这种解释并不是唯一的,因为宇宙空间中充满介质,2.7K微波背景辐射具有黑体辐射的性质,可以解释为宇宙空间中介质发出的温度是2.7K的热辐射。 仔细分析起来,问题可能出在将光谱线的红移都解释为星系运动的多普勒效应上。

过去,人们曾用多普勒效应解释了银河系内恒星的光谱线移动,从而成功地确定了星系内存在自转现象。但现在天文观测中却发现一些红移现象,若用运动的多普勒效应解释就存在许多困难,这促使人们考虑到必然还有其他机制能产生红移,这里列举几种观测结果。

①多普勒效应对同一个天体,其红移量与光谱线的频率无关,因此观测每个星系中不同谱线的红移量,比较它们是否一致,就是鉴别红移是否由多普勒效应产生的一种依据。如果一致,就表示有可能是由多普勒效应产生的;如果不一致,就肯定它至少不完全是由多普勒效应产生的。

1949年威尔逊对星系NGC4151的观测结果表明,虽然不同频率的红移量差别不大,但也超出了观测的误差范围,频率越高,红移量越小。这样至少可以认为宇宙红移不完全是由多普勒效应产生的。

②从太阳中心到边缘各点发出的同一种谱线,在扣除了各种已知的运动效应后,越靠近边缘的地方红移量越大,在太阳半径90%左右的地方,红移量急剧增加。这意味着太阳上还有某种未知的因素在产生红移。

③先驱6号宇宙飞船发射的遥测信号中心频率为2292兆赫,当飞船绕到太阳背面经过太阳边缘时观测到异常红移现象。 ④类星体红移量一般都很大,如果把这都归结为多普勒效应,算出的距离一般在100百万秒差距以上。

由此推算出它发出的总光能力为银河系的100倍;射电能为银河系的10万倍。 而由光变周期算出它的直径只有一光年左右,这意味着类星体的辐射密度非常高,但目前一直找不到产生这样高辐射密度的物理机制。

有些天文学家认为,类星体的红移中至少有一部分不是由多普勒效应产生的,因而类星体离我们的距离较现在推算的要近得多。 ⑤星系、类星体相互之间都有成协的现象,即这些天体两两或更多相距较近并有物理联系。

观测表明,有些成协天体间红移值相差较大,有些类星体光谱中的吸收线与发射线互不相同,而且不同的吸收线有各不相同的红移值,称为多重红移。 既然这些红移不能用多普勒效应解释,那么它产生的原因究竟是什么呢。

光在发射时固然有许多因素影响它的频率,但宇宙中这么多天体都如此有规律地只随着远离我们的距离而变化,就难以理解了。光在它漫长的传播路径上经历了几亿至上百亿年的岁月,这期间必然比它在发射的一瞬间有更多的因素影响着它的频率。

现在人们了解到,在星系际空间中存在着星系际介质,它的密度在10E-29克/立方厘米以下。成分与银河系的大致相同。

除了有能对星光产生可见效应的星系际气体、尘埃和固态物质、低光度星体外,还有大量的基本粒子。 据估计,星系间基本粒子的质量占了整个宇宙总质量的绝大部分,它们是看不见的。

光与介质的相互作用是复杂的,介质不仅能吸收光,还能。

5.关于月亮方面的科普知识

人眼所见的月亮,在古代也被称为月球、玄土、单鹃和潘宇,是地球的卫星和太阳系的第五大卫星。月亮的直径大约是地球的四分之一,质量大约是地球的一百八十一分之一。

月球是地球上已知的最大卫星,它的表面布满了小天体撞击形成的撞击坑。月球和地球之间的平均距离约为384,400公里,大约是地球直径的30倍。

月球可能是在大约45亿年前形成的。地球形成后不久,关于它的起源有几个假设。得到更多事实证据支持的理论是,它是在“大碰撞起源理论”中形成的,该理论是由地球和火星大小的天体“Teyia”发生巨大碰撞产生的碎片形成的,并聚集在地球周围。

扩展资料:

月亮绕着地球旋转,周期为27.32166,正好是恒星月,所以我们看不到月亮的背面。这种现象,我们称之为“同步旋转”或“潮汐锁定”,几乎是太阳系卫星世界的普遍规律。

它被认为是卫星对行星长期潮汐作用的结果。天平是一种奇妙的现象,它能让我们看到59个平面。主要有以下原因:

1、在椭圆轨道的不同部分,自转速度与公转角速度不匹配。

2、白道与赤道的交角。

月亮相对于背景天空每小时移动半度,这与月亮表面的表观直径相似。与其他卫星不同,月球的轨道平面更靠近黄道平面,而不是地球的赤道平面。相对于星空背景,月球绕地球运行(月球自转)所需的时间被称为恒星月。

新月和下一个新月之间(或两个相同阶段之间)所需的时间被称为农历月。月月比恒星月长的原因是,当地球在月球上运动时,它自己在绕太阳的轨道上前进了一段距离。

参考资料来源:百度百科-月球 (天体名称)

6.小学生天文科普知识有哪些

小学生天文科普知识有:一、打雷是怎么回事?这是阴电和阳电碰到一起发生的自然现象。

下雨时,天上的云有的带阳电,有的带阴电,两种云碰到一起时,就会放电,发出很亮很亮的闪电,同时又放出很大的热量,使周围的空气很快受热,膨胀,并且发出很大的声音,这就是雷声。二、流星雨是怎么回事?宇宙中有许多小天体按着自己的轨道和速度飞行。

有的自己炸碎了,有的和其他天体撞碎了。但它们继续向前飞行。

当它们的轨道和地球轨道碰到一起时,像雨点一样落到了地面,这种现象就叫流星雨。三、蓝天有多高?“蓝天”其实是地球的大气层。

大气层是包围着地球的空气,根据空气密度的不同分为5层,总共有2000-3000公里厚。但绝大部分空气都集中在从地面到15公里高以下的地方,越往高处空气越稀薄。

大气层有多厚,蓝天就应该有多高。四、太阳系里有哪些天体?太阳系中有9大行星。

从离太阳的距离从小到大依次为水星、金星、地球、火星、木星、土星、天王星、海王星。另外,太阳系里还有许多小行星,彗星和流星,已正式编号的小行星有2958颗。

最著名的彗星是哈雷彗星。五、怎样找北极星?在天空中很容易找到北极星:先找到大熊星,再找到北斗七星。

从勺头边上的那两颗指极星引出一条直线,它延长过去正好通过北极星。北极星到勺头的距离,正好是两颗指极星间距离的5倍。

也可以通过“仙后座”找北极星。六、为什么日落时天空是红的?因为日落时阳光在大气层中走的路程特别远。

除了红色光外,其他几种颜色的光传播不了那么远,还没到我们眼睛之前就都散失掉了。只有红色光线跑得最远,能传到我们眼睛里,所以我们看到日落时的天空的颜色就成了红色的。

七、我们能看到多少颗星星?用我们的肉眼从地球上能看到7000颗星,但是因为地球是圆的,不论我们站在地球上的什么地方,都只能看到半边天空,而且靠近地平线的星星又看不清楚,所以我们用肉眼实际上只能看到大约3000颗星。

7.科普小知识资料

月球俗称月亮,也称太阴,是地球的唯一的天然卫星,也是离地球最近的天体。

月球距离地球平均为384,401公里。这段距离约为地球赤道周长的10倍。

月球轨道呈椭圆形,近地点平均距离为363300公里,远地点平均距离为405500公里。月球直径为3476公里,约为地球直径的3/11。

月球表面面积大约是地球表面面积的1/14,比亚洲面积稍小。月球的体积只相当于地球体积的1/49。

月球质量约等于地球质量的1/81.3。月球物质的平均密度为每立方厘米3.34克,只相当于地球密度的3/5。

月面上自由落体的重力加速度地球上表面重力加速度的1/6。月球上的逃逸速度约为每秒2.4公里,为地球上的逃逸速度的1/5左右。

月球在环绕地球作椭圆运动的同时,也伴随地球围绕太阳公转,每年一周。月球不但处于地球引力作用下,同时也受到来自太阳引力的影响,所以具有十分复杂的轨道运动。

月球本身不发光也不透明,但能反射太阳光。由于日、地、月三者的相对位置不断变化,因此,地球上的观测者所见到的月球被照这部分也在不断变化,从而产生不同的视形状。

这叫月相。月相的变化是有规律的。

月相变化的周期性,给人们提供了一种计量时间的尺度。阴历或农历月就是以月相为基础,星期也是由此演化而来。

自古以来人们就知道,月球总以相同的一面向着地球。这是由于月球自转周期恰好和月球绕地球转动的周期相等造成的,而这两个周期相同则是潮汐长期作用的结果。

月球赤道面同它的轨道面有6度41分的倾角。因为这一倾角的存在和月球绕转速度的不均匀等原因,在月球运动过程中,地面上某一点的观测者多少还能看出月面边沿有前后的摆动。

从地面观测,不止看到月球的半面,而且能看到月球的59%,其余41%则不能直接看到。 月球形状也是南北极稍扁、赤道稍许隆起的扁球。

它的平均极半径比赤道半径短500米。南北极区也不对称,北极区隆起,南极区洼陷约400米。

月球重心和几何中心并不重合,重心偏向地球2公里。这一结论已为"阿波罗号"登月获得的资料所证实。

月面上山岭起伏,峰峦密布。此外,还有洋、海、湾、湖等各种特征名称。

其实,月面上并没有水。只是早年观测者凭借想象,借用地球上的名称而已,最多不过有某些形态上的相似罢了。

月面上的最明显的特征是环形山,通常指碗状凹坑结构。其中大的直径可超过100公里,小的不过是些凹坑。

直径大于1公里的环形山总数3万多个,占月球表面积的 7~10%。环形山大多以著名天文学家或其他学者的名字命名,月球背面有4座环形山,分别以中国古代天文学家石申、张衡、祖冲之、郭守敬命名。

月面最大的几个环形山是:南极附近的贝利环形山,直径295公里;克拉维环形山,直径233公里;牛顿环形山,直径230公里。许多环形山的中心区有中央峰或中央峰群,高达2.5公里。

肉眼所看到的月面上的暗淡黑斑叫“月海”,它们是广阔的平原。在月球正面,月海面积约占整个半球表面的一半。

已知月海共22个(包括背面),其中最大的叫风暴洋,面积约500万平方公里。雨海面积约90万平方公里。

月面中央的静海面积约26万平方公里。此外,较大的还有澄海、丰富海、危海、云海等。

月海大多具有圆形封闭的特点,四周是山脉。有些月海伸向陆地称为湾,小的月海则称为湖。

月陆是月面上高出月海的地区,一般高出2~3公里。月陆主要由浅色的斜长岩组成,其反照率较高。

月球正面的月陆与月海面积大致相等,而背面则月陆面积大些。月陆形成的年代经同位素年龄测定为46亿年,比月海要早。

月球上也存在一些山脉,大多以地球上的山名命名,如亚平宁山脉、高加索山脉、阿尔卑斯山脉等。最长的山脉长达1000公里,往往高出月海3~4公里。

最高的山峰在月球南极附近,高达9000米,比地球上最高的珠穆朗玛峰还高。除山脉外,还有长达数百公里的峭壁,最长的是阿尔泰峭壁。

月面上有一些辐射纹, 典型的有第谷环形山和哥白尼环形山周围的辐射纹。第谷环形山有辐射纹12条,从环形山周围呈放射状向外延伸,最长的达1800公里,满月时看得最清楚。

其成因尚无定论:有人说是火山爆发形成的;也有人认为是陨石轰击月面造成的。 长期天文观测与登月的直接考察证实,月球周围没有明显的磁场。

月球磁场强度不及地球磁场的1/1000。月球上更没有像地球和木星那样的辐射带。

月球上不存在任何形态的水,完全没有大气,几乎接近真空状态。通过月球火箭探测查明:月球正面有称为"重力瘤"或"质量瘤"的重力异常区,达12处之多;月球表面大部分地区为一层厚度不等的月尘和岩屑所覆盖。

月球没有像地球大气那样的保护层,月面直接受到流星体的猛烈冲击,因此在一定程度上会影响到月岩的化学成分、岩屑大小、玻璃含量以及再结晶的程度。月球早期广泛发生火山爆发,喷出大量熔浆,从而形成月面上广阔的熔岩平原。

月球本身并不发光,只反射太阳光。它的亮度随日、月间角距离和地、月间距离的改变而变化。

它的平均亮度为太阳亮度的1/465000,亮度变化幅度从1/630000至1/375000。满月时亮度平均为 -12.7等。

它给大地的照度平均相当于100瓦电灯在距离21米处的照度。

8.水星的天文科学小知识有哪些

水星是太阳系最小的类地行星。

由于被太阳的强光遮挡,观测起来十分困难。哥白尼临终前曾为一生从未看到过水星而遗憾。

20世纪70年代以后,人类对水量有了更多了解。 水星是太阳系最小的类地行星。

由于被太阳的强光遮挡,观测起来十分困难。哥白尼临终前曾为一生从未看到过水星而遗憾。

20世纪70年代以后,人类对水量有了更多了解。 水星距离太阳最近,只有5790万千米,是日地距离的0.387倍,水星赤道半径约为地球的2/5。

水星没有空气。水星外观同月球十分相像,表面布满了大大小小的环形山。

亿万年前可能发生过火山活动,星面上现在可见几处貌似火山熔岩形成的平原地区,还到处遍布大大小小的陨石坑。水星上有一个巨大的同心圆构造,半径约有1300千米,它位于水星北纬30度西经195度,由于特别酷热,就被科学家们命名为“卡路里盆地”。

水星表面还有100多个具有放射状条纹的坑穴,还有大量三四千米高的断崖,有的长达数百千米。 水星的密度与地球接近。

它的中心可能是一个与月球大小相近的铁镍组成的核心,也有一个磁场,但其强度只是地球的1/100。水星轨道速度为48千米/秒,每秒比地球还快18千米。

绕太阳公转一圈的速度也最快,只要88个地球日,还不到地球的3个月,水星就是1年了。不过,水星的“日”很长,水星自转1圈将近58.65个地球日,也就是说水星的1天是地球的近两个月,在水星上的1年里,只能看到两次日出和日落。

水星和金星一样没有一颗卫星。离太阳距离最近 水星和太阳的平均距离为5790万公里,约为日地距离的0.387倍,比其它太阳系的行星近,到目前为止还没有发现过比水星更近太阳的行星。

轨道速度最快 因为距离最近,所以受到太阳的引力也最大,因此在它的轨道上比任何行星都跑得快,轨道速度为每秒48公里比地球的轨道速度快18公里。这样快的速度,只用15分钟就能环绕地球一周。

表面温差最大 因为没有大气的调节,距离太阳又非常近,所以在太阳的烘烤下,向阳面的温度最高时可达430℃,但背阳面的夜间温度可降到零下160℃,昼夜温差近600℃,夺得行星表面温差最大的冠军,这真是一个处于火和冰之间的世界。 卫星最少 太阳系中发现了越来越多的卫星,总数超过60个,但只有水星和金星的卫星数是最少的或根本没有卫星的行星。

时间最快 水星年 地球每一年绕太阳公转一圈, 而"水星年"是太阳系中最短的年,它绕太阳公转一周只用88天,还不到地球上的3个月。这都是因为水星围绕太阳高速飞奔的缘故,难怪代表水星的标记和符号是根据希腊神话,把它比作脚穿飞鞋手持魔杖的使者。

水星日 在太阳系的行星中,“水星年”时间最短,但水星"日"却比别的行星更长,水星公转一周是88天(以地球日为单位)而是自转一周是58.646天(地球日),地球每自转一周就是一昼夜,而水星自转三周才是一昼夜。水星上一昼夜的时间,相当于地球上的176天。

与此同时,水星也正好公转了两周。因此人们说水星上的一天等于两年,地球人到了水星上多么不习惯。

有趣的天体科普小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除