1.谁知道数学名言
1.、王菊珍的百分数 我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
2、托尔斯泰的分数 俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。
分母越大,则分数的值就越小。” 1、数学的本质在於它的自由. 康扥尔(Cantor) 2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor) 3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert) 4、数学是无穷的科学. 赫尔曼外尔 5、问题是数学的心脏. P.R.Halmos 6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert 7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯 3、雷巴柯夫的常数与变数 俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。
用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” 二、用符号写格言 4、华罗庚的减号 我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”
5、爱迪生的加号 大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。” 6、季米特洛夫的正负号 著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”
三、用公式写的格言 7、爱因斯坦的公式 近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”
“如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积是多一点,但两圆之外的空白都是我们的无知面。圆越大其圆周接触的无知面就越多。”
-芝诺 柯西(A. L. Cauchy, 1789 – 1857) Men pass away, but their deeds abide. 人总是要死,但是,他们的业绩永存。 拉普拉斯(Laplace, 1749 – 1827) What we know is not much. What we do not know is immense. 我们知道的是很少的,我们不知道的是无限的。
埃尔米特(C. Hermice 1822 – 1901) Abel has left mathematicians enough to keep them busy for 500 years. 他评价阿贝尔(Abel)时,曾经说:「阿贝尔留下的可以使数学家忙碌五百年。」 普尔森(Poisson, Siméon 1781-1840) "Life is good for only two things, discovering mathematics and teaching mathematics" 生命只为两件事,发展数学与教授数学 爱因斯坦(Einstein, Albert 1879-1955) I don't believe in mathematics. 我不相信数学 Imagination is more important than knowledge. 想象力比知识重要 Do not worry about your difficulties in mathematics, I assure you that mine are greater. 不要为你的数学难处担心,我保证我的更多 Science without religion is lame; religion without science is blind. 没有宗教,科学无说服力。
没有科学,宗教变的盲目。 高斯(Gauss, Karl Friedrich 1777-1855) God does arithmetic. 上帝会算数 Few, but ripe. 宁可少些,但要好些。
2.数学小知识50字以上,200字以下
1、数学是无穷的科学. ——外尔(Weil)
2、问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )
3、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )
4、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.——高斯 (Gauss)
5、数学是科学6、数学比喻: 古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天。他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习"。
7、把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义
8、不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点。
9、会用数学公式,并不说明你会数学。
10、如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好!
的皇后,而数论是数学的皇后 ——高斯(Gauss)
3.数学小知识、数学名言
没有数学的成语 有数字的
不好意思啦
4.数学名言 25条 谢
数学是无穷的科学. ——赫尔曼外尔 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王. ——高斯 在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康扥尔 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡. ——希尔伯特 在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么. ——毕达哥拉斯 一门科学,只有当它成功地运用数学时,才能达到真正完善的地步. ——马克思 一个国家的科学水平可以用它消耗的数学来度量. ——拉奥 柯西(Augustin Louis Cauchy 1789-1857)如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。
给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接著研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。
陈省身数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。科学需要实验。
但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。
这科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。
所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。数学中没有诺贝尔奖,这也许是件好事。
诺贝尔奖太引人注目,会使数学家无法专注於自己的研究。我们欣赏数学,我们需要数学。
一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对於已知材料的了解,和推广范围。
笛卡儿(Rene Descartes 1596-1650)我思故我在。我决心放弃那个仅仅是抽象的几何。
这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在於解释自然现象的几何。
数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。
欧拉(Leonhard Euler 1707-1783)虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现陕。因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情祖冲之(429-500)迟序之数,非出神怪,有形可检,有数可推。
刘徽事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。
拉普拉斯(Pierre Simon Laplace 1749-1827)这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。在数学这门科学里,我们发现真理的主要工具是归纳和类比。
读读欧拉,读读欧拉,他是我们大家的老师。一个国家只有数学蓬勃发展,才能表现她的国力强大。
认识一位巨人的研究方法,对於科学的进步并不比发现本身更少用处。科学研究的方法经常是极富兴趣的部分。
莱布尼茨(Gottfried Wilhelm von Leibniz 1646-1716)虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。不发生作用的东西是不会存在的。
考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标西尔维斯特(James Joseph Sylvester 1814-1897)几何看来有时候要领先於分析,但事实上,几何的先行於分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其他数学家加在一起还要多。
魏尔斯特拉斯(Karl Weierstrass 1815-1897)一个没有几分诗人才能的数学家决不会成为一个完全的数学家。
5.数学名人名言和短小的故事
思维的经济原则在数学中得到了高度的发挥。
数学是各门科学在高度发展中所达到的最高形式的一门科学,各门自然学科都频繁的求助于它。 _______Mach,E 数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由 _______Hankel,Hermann 几何、理论算术和代数,这些学科除了定义和公理之外,没有其他原则,除了演绎以外,没有其他证明过程但就在这一过程中,却已综合了简单性、复杂性、严密性和一般性,这一特性是不为其它学科所具有的。
______Whewell,W.数学知识有三个不同于其它知识地主要特征:其一是数学知识比其它知识更清晰地使其结果具有真理性;其二是数学知识乃是获得其它正确知识地必经的第一步;其三是数学知识的获得并不依赖于其它知识。 ______Schubert,H.数学家毫不顾及声明或猜想,他们仅仅根据定义和公理,并用论证和推理来演绎每一件事。
事实上,现在把那些仅由猜想或假说建立起来的理论称之为科学事不正确的,因为猜想往往求助于某种见解或主张,因而他不能由此而产生知识。 ________Reid,Thomas没有那门学科能比数学更为清晰的阐明自然界的和谐性。
________Carus,Paul 数学是科学的大门钥匙,忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。更为严重的是,忽视数学的人不能理解他自己这一疏忽,最终将导致无法寻求任何补救的措施。
_______Bacon,Roger数学不是规律的发现者,因为他不是归纳。数学也不是理论的缔造者,因为他不是假说。
但数学却是规律和理论的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。如果没有数学上的认可,则规律不能起作用,理论也不能解释。
_______Peirce,Benjamin 历史使人聪明,诗歌使人机智,数学使人精细,哲学使人深邃,道德使人严肃,逻辑与修辞使人善辩。 _______Bacon,Francis对数学的酷爱,不仅在吾辈之中与日俱增,而且在军队中也是一样,对此已在上次战役中充分地体现出来了。
蓬乃派托自己就有很好地数学素养,当然不能要求所有学过数学的人都能成为拉普拉斯和拉格朗日那样的几何学家,或者都成为蓬乃派托那样的英雄。但是,数学毕竟在他们的头脑中留下了痕迹。
这就能使他们比未经过 数学训练的人作出更多的贡献。 _______Lalande学习数学是为了探索宇宙的奥秘。
如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。如果说语言反映和揭示了造物主的心声,那么数学就反映和揭示了造物主的智慧,并且反复地重复着事物如何变异为存在地故事。
数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。
________Chancellor,W.E.笛卡儿的解析几何于牛顿,莱不尼兹的微积分已被扩张到罗巴切夫斯基、黎曼、高斯和塞尔维斯托的奇异的数学方法中(这种扩张比哲学史上所记载的任何一门学科的扩张更大胆)。事实上,数学不仅是各门学科所必不可少的工具,而且它从不顾及直观感觉的约束而自由地飞翔着。
历史地看,数学还从没有象今天那样表现出对于纯粹推理地至高无上。 ________Butler,Nicholas Murray -------------------------数学家的墓志铭 一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。
这是一句既刻划螺线性质又象征他对数学热爱的双关语。 数学家的故事——苏步青 苏步青1902年9月出生在浙江省平阳县的一个山村里。
虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。
可量,后来的一堂数学课影响了他一生的道路。 那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。
第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。
中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”
他旁。
6.数学励志名句10句
一门科学,只有当它成功地运用数学时,才能达到真正完善的地步.——马克思在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.——毕达哥拉斯数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.——高斯数学是无穷的科学. ——赫尔曼外尔在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康托尔只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.——希尔伯特一个国家的科学水平可以用它消耗的数学来度量. ——拉奥柯西 (Augustin Louis Cauchy 1789-1857)如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。
给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。
陈省身数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。科学需要实验。
但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。
这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。
所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。数学中没有诺贝尔奖,这也许是件好事。
诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。我们欣赏数学,我们需要数学。
一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。
笛卡儿 (Rene Descartes 1596-1650)我思故我在。我决心放弃那个仅仅是抽象的几何。
这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。
数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。
欧拉 (Leonhard Euler 1707-1783)虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。
祖冲之 (429-500)迟序之数,非出神怪,有形可检,有数可推。刘徽事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。
又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。拉普拉斯 (Pierre Simon Laplace 1749-1827)这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。
在数学这门科学里,我们发现真理的主要工具是归纳和模拟。读读欧拉,读读欧拉,他是我们大家的老师。
一个国家只有数学蓬勃发展,才能表现她的国力强大。认识一位巨人的研究方法,对于科学的进步并不比发现本身更少用处。
科学研究的方法经常是极富兴趣的部分。莱布尼茨 (Gottfried Wilhelm von Leibniz 1646-1716)虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。
不发生作用的东西是不会存在的。考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。
西尔维斯特 (James Joseph Sylvester 1814-1897)几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。
魏尔斯特拉斯 (Karl Weierstrass 1815-1897)一个没有几分诗人才能的数学家决不会成为一个完全的数学家。 望采纳。
7.给我一些数学名人名言
拉普拉斯说:“在数学中,我们发现真理的主要工具是归纳和模拟”
维特根斯坦说:“数学是各式各样的证明技巧”
华罗庚说:“新的数学方法和概念,常常比解决数学问题本身更重要”
纳皮尔说:“我总是尽我的精力和才能来摆脱那种繁重而单调的计算”
开普勒说:“以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者”
拿破仑说:“一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关”
爱因斯坦说:“数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。…。数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。”
邱成桐说:“现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量”
伦琴说:“第一是数学,第二是数学,第三是数学”
华罗庚说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”
冯纽曼说:“数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。”
皮娄(加拿大生物学家)说:“生态学本质上是一门数学”
开普勒说:“数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的”
傅立叶说:“数学主要的目标是公众的利益和自然现象的解释”
罗巴切夫斯基说:“不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上”
莱布尼兹说:“用一,从无,可生万物”
亚里士多德说:“思维自疑问和惊奇开始”
努瓦列斯说:“数学家本质上是个着迷者,不迷就没有数学”
柯普宁(前苏联哲学家)说:“当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐”
罗素说:“在数学中最令我欣喜的,是那些能够被证明的东西”
高斯说:“给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登”
波利亚说:“从最简单的做起”
高斯说:“宁可少些,但要好些” “二分之一个证明等于0”
希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢?往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。”
8.数学小笑话和数学名人名言
“数字是不会骗人的,”老师说:“一座房子,如果一个人要花上十二天盖好,十二个人就只要一天。二百八十八人只要一小时就够了。”一个学生接着说:“一万七千二百八十人只要一分钟,一百零三万六千八百人只要一秒钟。此外,如果一艘轮船横渡大西洋要六天,六艘轮船只要一天就够了。四杯25度的水加在一起就变开水了!数字是不会骗人的!”
上午第四节课,A生肚子饿,无心听课,坐在位置上呆呆地想着牛肉,面包。 数学老师发现他走神,便提问他:“1.130小数向右移动一位,将会怎么样?” A生毫不犹豫地回答:“将会开午饭!”
老师出了一道题:8÷2=?
随后问大家:"8分为两半等于几?"
皮皮回答:"等于0!"
老师说:"怎么会呢?"
皮皮解释:"上下分开!"
丁丁说道:"不对,等于耳朵!"
老师:"哦?"
丁丁回答:"左右分开呗!"
9.关于数学的名言名句
数 学 家 名 言 一门科学,只有当它成功地运用数学时,才能达到真正完善的地步. ——马克思 在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么. ——毕达哥拉斯 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王. ——高斯 数学是无穷的科学. ——赫尔曼外尔 在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康托尔 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡. ——希尔伯特 一个国家的科学水平可以用它消耗的数学来度量. ——拉奥 柯西 (Augustin Louis Cauchy 1789-1857) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。
给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。
陈省身 数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。 科学需要实验。
但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。
这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。
所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。 数学中没有诺贝尔奖,这也许是件好事。
诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。 我们欣赏数学,我们需要数学。
一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。
笛卡儿 (Rene Descartes 1596-1650) 我思故我在。 我决心放弃那个仅仅是抽象的几何。
这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。
数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。
欧拉 (Leonhard Euler 1707-1783) 虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。 因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。
祖冲之 (429-500) 迟序之数,非出神怪,有形可检,有数可推。刘徽 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。
又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。拉普拉斯 (Pierre Simon Laplace 1749-1827) 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。
在数学这门科学里,我们发现真理的主要工具是归纳和模拟。 读读欧拉,读读欧拉,他是我们大家的老师。
一个国家只有数学蓬勃发展,才能表现她的国力强大。 认识一位巨人的研究方法,对于科学的进步并不比发现本身更少用处。
科学研究的方法经常是极富兴趣的部分。莱布尼茨 (Gottfried Wilhelm von Leibniz 1646-1716) 虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。
不发生作用的东西是不会存在的。 考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。
西尔维斯特 (James Joseph Sylvester 1814-1897) 几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。 也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。
魏尔斯特拉斯 (Karl Weierstrass 1815-1897) 一个没有几分诗人才能的数学家决不会成为一个完全的数学家。
10.数学励志名句10句
一门科学,只有当它成功地运用数学时,才能达到真正完善的地步.——马克思 在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.——毕达哥拉斯 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.——高斯 数学是无穷的科学. ——赫尔曼外尔 在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康托尔 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.——希尔伯特 一个国家的科学水平可以用它消耗的数学来度量. ——拉奥 柯西 (Augustin Louis Cauchy 1789-1857) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。
给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。
陈省身 数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。科学需要实验。
但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。
这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。
所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。数学中没有诺贝尔奖,这也许是件好事。
诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。我们欣赏数学,我们需要数学。
一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。
笛卡儿 (Rene Descartes 1596-1650) 我思故我在。我决心放弃那个仅仅是抽象的几何。
这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。
数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。
欧拉 (Leonhard Euler 1707-1783) 虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。
祖冲之 (429-500) 迟序之数,非出神怪,有形可检,有数可推。刘徽 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。
又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。拉普拉斯 (Pierre Simon Laplace 1749-1827) 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。
在数学这门科学里,我们发现真理的主要工具是归纳和模拟。读读欧拉,读读欧拉,他是我们大家的老师。
一个国家只有数学蓬勃发展,才能表现她的国力强大。认识一位巨人的研究方法,对于科学的进步并不比发现本身更少用处。
科学研究的方法经常是极富兴趣的部分。莱布尼茨 (Gottfried Wilhelm von Leibniz 1646-1716) 虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。
不发生作用的东西是不会存在的。考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。
西尔维斯特 (James Joseph Sylvester 1814-1897) 几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。
魏尔斯特拉斯 (Karl Weierstrass 1815-1897) 一个没有几分诗人才能的数学家决不会成为一个完全的数学家。 望采纳。