有哪些天文的小知识

2022-07-20 综合 86阅读 投稿:玖歌

1.有趣的天文科学小知识有哪些

有趣的天文科学小知识有光年是距离单位、太阳的颜色、太阳系中表面温度最高的行星、太阳系中表面风速最快的行星、太阳系中度日如年的行星。

1、光年是距离单位

光年是天文大尺度距离单位,并非时间单位。鉴于光速在真空中不受惯性系和参考系限制而恒定不变的性质,人类把光速作为衡量距离的精准单位,还有一种含义,因为“光年”包含“年”这个字,而年通常是时间单位。

一光年就是光运行一年的距离,科学界把这个年定义为儒略年:365.25年;这样一光年精确的距离为:9460730472580800m,通俗来讲,一光年大概是:9.46万亿公里。目前人类最远探测器是于1977年发射的旅行者一号距离地球约216亿公里,也只有一光年的0.22%。

2、太阳的颜色

太阳真正的颜色是白色。我们之所以把太阳看成黄色,是因为地球的大气层更不容易将高波长的颜色,比如红色、橘色和黄色,散射出去。

因此,这些波长的颜色就是我们看到的,这也就是太阳呈现出黄色的原因。要是离开地球在太空中看太阳的话,就会发现太阳真正的颜色是百色(小编也没看过,不知道会不会发现眼睛已经被闪瞎)。

3、太阳系中表面温度最高的行星

太阳系中表面温度最高的行星不是距离太阳最近的水星,而是金星。水星虽然距离太阳最近,但是水星表面温度在白天可以达到427℃,而金星由于有着浓密的二氧化碳气体,导致强烈的温室效应。

其表面温度最高可以达到500℃,就算在金星夜晚也有400多℃,使得金星表面平均温度有400多℃以上。顺便说下,水星因为其夜间温度可以下降至-183℃,使得水星是太阳系中表面温差最大的行星,表面昼夜温差高达600℃。

4、太阳系中表面风速最快的行星

海王星大黑斑是出现在海王星上的暗斑,如同木星的大红斑一样。它在1989年被NASA的航海家2号太空船检测到,虽然他似乎与木星的大红斑一样,但它是个反气旋风暴,它被相信是个相对来说没有云彩的区域。

这个斑点的大小与地球近似,并且非常像木星上的大红斑。起初认为它是与大红斑一样的风暴,但更接近的观察显示它是黑暗的,并且是向海王星内部凹陷的椭圆形。

围绕在大黑斑周围的风速经测量高达每时2400公里(1500英里),是太阳系中最快的风,大黑斑被认为是海王星被甲烷覆盖时产生的一个洞孔,类似于地球上的臭氧洞。

5、太阳系中度日如年的行星

金星的公转周期是224.7个地球日,而自转周期是243个地球日,也就是说金星的一天要比一年长18个地球日,在哪里是名副其实的“度日如年”。

至于原因还没有定论,不过有一点需要注意的是,金星是太阳系中唯一一个逆向自转的大行星,自转方向是自东向西,也就是说在金星上看太阳是西升东落。

2.有哪些天文知识

说它古老,是因为早在五千年前的古埃及文明时期,劳动人民就已经运用太阳星辰的运动规律来指导农耕生产了。

说它新兴,是因为即使是在科学技术高度发展的当今,天文学仍然是推动科技理论发展的两大原动力之一。(另一个是粒子物理学)。

因此,完全可以说,天文学在整个自然科学体系中的地位并不亚于牛顿三定律在经典物理中的重要作用。她既自成体系,又和其它学科,尤其是近现代物理相互融合,形成了她的特点和知识内容。

她既博大精深,又细致通俗。这使得爱好并研究天文学的每一位工作者都找到了自已合适的位置,并得到了无穷的乐趣和满足。

下面的五个问题将成为本浅述的内容重点,其中第五个问题将是它们的核心。编辑本段特点天文研究工作不同于其它学科的研究,具有以下四个特点:1、被动性天文研究的手段主要是观测──被动地观测,它不能像其它学科那样,人为地设计实验,"主动"地去影响或变革所研究的对象,只能"被动"地去观测,根据已经存在的事实来进行分析。

天文研究的过程可以用下图来简单地概括观测─→积累资料─→分析资料─→理论(收集感性素材)2、粗略性由于天文观测的被动性,不可避免地带来了天文观测的粗略性,我们不妨作一个比较。在地球上要证明一个理论是否正确,可以采用不同的方法,可以设计很多不同的方案或实验,达到理论要求的精度,而在宇观世界中,由于观测仪器的分辨度,灵敏度等的限制,以及观测手段的单一性──单靠望远镜,所以,在一定时期内,为了研究一个问题,只能依靠仅有的几种方法,或是仅有的几个不太准确的数据来粗略估计。

这与在地球上的实验对比起来,表现出单一性和强烈的粗略性!而且,越是深远的天体,越是前沿的课题其粗略性就越严重,越明显,因此从某种意义上来说,天文学的发展与天文仪器(或更准确地说是观测手段)的发展直接相关。3、瞬时性让我们来比较下面三组数据a、天体的年龄 几百万岁--百多亿年b、人类文明 几千年c、人的一生 几十年--上百年从比较中我们不难看出,人类研究天体的演化仅是短短地一瞬间,就像是在人类文明诞生的时候对宇宙拍了一张极高精度的照片,而人类文明发展和延续的过程,就是用不同倍数(越来越大)的放大镜来观察这张照片一样,人类为了征服自然获得自由,而不断研究周围的宇宙。

他们观测天体的主要目的,就是想了解各种天体的形成或演化过程,以便以后很好地加以利用。4、长期性和连续性任何理论的形成都建立在大量的数据之上,天文学也不例外,而且对天文观测数据的积累则更是长期的、持续不断的。

只有这样的数据才是有用的,才能在此基础上得出相对正确的理论。开普勒正是在其老师第谷花费毕生精力留下的行星观测资料中发现了三大定律。

第一颗脉冲星的发现正是在距今900多年的历史记载中找到了其形成的证据等等。即使是最平常的天文观测(如:月球、太阳、变星、双星)也需要几天以至于几十年的持续观测,才能有所收获,得出结论。

因此,天文工作者必须要具有持之以恒的毅力和认真细致的工作态度,否则就连皮毛都不可能学到!综上所述,我们可以给天文学下一个定义,所谓天文学就是在极其"短暂"的千百年的时间里,以基本上"被动"的观测方法面向广阔无边的宇宙空间,探索各类天体在漫长历程中的存在和演变的一门学科。编辑本段基本名词任何一门学科,一个知识体系都是由一些较基本较抽象的新的概念。

天文知识和名词组成的。天文学也一样。

下面为了能够初步接触一下天文学,先介绍几个天文学的基本名词,作为入门的第一步。它们分别是天球,周日视运动,子午圈,中天,黄道和目视星等。

1、天球天球就是以观测者为球心,以无限大为半径所描绘出的假想球面,我们看到的天体(星星、月亮、太阳)是其在这个巨大的圆球的球面上的投影位置。2、周日视运动由于地球自转(自西向东),所以地面上的观测者看到的天体在一天中在天球上自东向西沿着与转轴垂直的平面内的小圆转过一周。

3、子午圈过观测者的天顶和南北天极的大圆。4、中天天体经过观测者的子午圈时,叫做中天。

由于地球的自转,天体一天要穿过子午圈两次,其中离观测者天顶较近一次(一般是晚上的那一次)叫上中天。另外那一次叫下中天5、黄道简单的说就是太阳在天球中的运行轨迹。

由于运动的相对性,所以黄道也就是地球公转轨道与天球的交线。6、目视星等visual magnitude ,指用目视波段的亮度计算出的星等。

[1]。

3.天文知识有哪些

太阳是太阳系的中心天体,是离我们最近的一颗恒星。太阳系的九大行星和其他天体都围绕它运动。太阳与地球的平均距离为14960万公里,半径为69.6万公里,为地球半径的109倍,体积为地球的130万倍,质量为地球的33万倍(占整个太阳系质量的99.86%),平均密度为1.4克/厘米3。太阳具有强大的吸引力,是控制太阳系天体运动的主要力量源泉。

太阳是一个炽热的气体球,表面温度约6000℃,愈向内部温度愈高,中心温度高达1500万K。在这样的高温高压下,太阳中心区不停地进行着氢核聚变成氦核的热核反应,产生巨大的能量。太阳每秒钟释放出约4*1033尔格的能量,相当于0.5亿亿亿马力;其中只有二十二亿分之一的能量辐射到我们的地球,是地球上光和热的主要来源。

太阳是银河系中的一颗普通恒星,位于银道面之北的猎户座旋臂上,距银心约2.3光年,它以每秒250公里的速度绕银心转动,公转一周约需2.5亿年。太阳也在自转,其周期在日面赤道带约25天;两极区约为35天。通过对太阳光谱的分析,得知太阳的化学成分与地球几乎相同,只是比例有所差异。太阳上最丰富的元素是氢,其次是氦,还有碳、氮、氧和各种金属。据推算,太阳的寿命约为100亿年,目前已度过约50亿年。

行星

沿椭圆轨道环绕太阳运行的、近似球形的天体叫行星。太阳系有九大行星,按距离太阳的次序是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。冥王星离太阳最远,其轨道直径约120亿公里;天文学家认为太阳系的疆界可能比这个范围还要大得多。

九大行星按它们距离太阳的远近分为内行星和外行星两群:水星、金星、地球和火星为内行星;木星、土星、天王星、海王星、冥王星为外围行星。若按它们的质量、大小和结构特征,则分为类地行星和类木行星两类。体积小而密度大、自转慢、卫星少的行星与地球相似,称为类地行星,如水星、金星、火星称为类地行星;体积大而密度小,自转相当快、卫星多的行星称为类木行星,土星、天王星、海王星和冥王星都是类木行星。

行星本身不发射可见光,以其表面反射太阳光而发亮。在星空背景上,行星有明显的相对移动。这种移动都沿着黄道进行。九大行星中,最先被人们知道的是水星、金星、火星、木星和土星。太阳系中的另外三颗行星是在发明天文望远镜后发现的。1781年英国F.W.赫歇耳发现天王星;法国的勒威耶和英国的亚当斯各自推算出海王星的位置,1846年由德国的伽勒所观测到;冥王星则是1930年由美国的汤博发现。

4.天文小知识

1、冬季2、883、描述周日视运动4、4分钟5、紫微垣,太微垣和天市垣三个区域6、我国古代为了观测天象及日、月、五星的运行,选取二十八个星官作为观测时的标志,称为“二十八宿”。

它又平均分为四组,每组七宿,与东、西、南、北四个方位和苍龙、白虎、朱雀、玄武(龟蛇合称)等动物形象相配,称为“四象”。每一宿各由不同数目的恒星组成,有的星宿包含十几颗至几十颗星,就星宿而言,每个星宿都有自己的属性和代表物,这也许是中国人对自然万物的一种信仰,但同时也是对天文观测的一种手段。

7、赤道8、极夜9、时间10、6月22日,夏至日。

5.小学生必须知道的天文知识有哪些

1、八大行星

水金地火木土星,天王海王绕外边;

唯有地球生物现,温气液水是由缘①。

(①:温指的是适宜的温度;气指的是适宜生物呼吸的大气;液水指的是液态水)

2、地球特点

赤道略略鼓,两极稍稍扁。自西向东转,时间始变迁。

南北为经线,相对成等圈。东西为纬线,独成平行圈;

赤道为最长,两极化为点。

3、东西南北半球的划分

西经二十度,东经一百六,一刀切下去,东西两半球。

南北半球分,赤道零纬度, (四季温带显,南北相反出)。

4、昼夜交替和四季变化

地球自转,昼夜更换。绕日公转,四季出现。

自转一日,公转一年。自西向东,方向不变。

5、地球五带

地球有五带,全靠四线分;回归间热带,极圈分寒温;

寒温各有二,五带温不均①。①温,指温度。

6、地图辨方向

地图方向辨,摆正放眼前;上北下为南,左西右东边。

标图易分辨,经纬网较难;o纬线指南北,东西经线圈。

极地投影图,定向较特殊:对于北半球,心北四周南;

北纬圈东西,自转反时走。对于南半球,心南北四周;

南纬圈东西,自转顺时走。

7、大洲和大洋

地球表面积,总共五亿一;水陆百分比,海洋占七一。

陆地六大块,含岛分七洲;亚非南北美,南极大洋欧。

水域四大洋,太平最深广;大西“S”样,印度北冰洋。

板块构造学,六块来拼合;块内较稳定,交界地震多。

8、大洋和大洲的位置

洋以洲为界,洲以洋分野。太平洋为四洋首,位于亚澳两美间。

大西洋西南北美,东岸临界欧与非。印度洋临亚非澳,南部三洋水相连。

北冰洋面为最小,亚欧北美三洲环。

9、七大洲分界和位置

地表十分陆占三,亚欧非洋两美南①。亚欧两洲本一体,乌拉高加分两边②;

亚非原本相结连,苏伊运河来割断③;亚洲北美隔水望,白令海峡在中间;

中美南北来牵线,巴拿运河又阻拦④;数大洋洲面积小,似断不断亚下边。

亚欧非洋东半球,南北美占西半边,唯有南极搞独立,冰层覆盖称高原。

①洋,大洋洲。两美,南美洲和北美洲。南,南极洲。②乌拉,乌拉尔山脉和乌拉尔河。高加,高加索山脉。③苏伊运河,苏伊士运河。 ④巴拿运河,巴拿马运河。

10、七大洲地形

(1)亚洲

亚洲地形杂,中高四周洼。冲积平原广,山地高原大。 -江河放射流,水资源可夸。

(2)欧洲

半岛缘海多,形体分节肢;山地居南北,中部平原低;

地形平原主,海拔倒第一。

(3)北美洲

东部高原联山地,西部山地接高原。东西相间高大陆,世称湖海在其间。

(4)南美洲

安第斯山雄踞西,东部平原高原区。地形多为世界最,高原平原列首位。

西部山脉为最长,亚马逊河流域广。热带雨林居世首,草原要数潘帕斯。

(5)非洲

平均海拔六百米,号称大陆高原洲,东部高原连一体,西部沙漠平原有。

(6)大洋洲

面积小,分两区,一大陆,二岛屿。大陆东西高,中部是盆地。

(7)南极洲

四周环三洋,多年冰雪积;超过二千米,海拔数第一。

6.天文知识有哪些

如果你有上网的条件,那么百度百科里的天文学分类就是一个不错的选择,当然,可能有些人会有百度百科里的内容不一定准确,是的,是不一定准确,不过天文知识可能不准确的那也多数是数字,比如说行星的体积有多大等,这个错误其实没有太大的影响,因为有多大体积那也是人类计算测量的,有可能还会有变化,只要大概意思知道就可以了,还有,大网站的科技栏目里的天文航天也可以看看,关于天文知识的网站,论坛也是一个不错的选择,如果不是学天文学专业的,除非需要收藏,否则稍微买些书看看就可以了,真正在天文台工作的还要掌握很高深的数学物理等知识,一般普通民众只要稍微了解一下就可以了,那些天文类的杂志也无非就是这些内容,网上大多数也都有,合理地利用网络资源学习天文学知识是一个很不错的选择,希望楼主能多学一点天文学知识,祝你天天进步。

7.恒星的天文科学小知识有哪些

恒星的知识 恒星是由炽热气体组成的,是能自己发光的球状或类球状天体。

由于恒星离我们太远,不借助于特殊工具和方法,很难发现它们在天上的位置变化,因此古代人把它们认为是固定不动的星体。我们所处的太阳系的主星太阳就是一颗恒星。

1.1恒星演化 恒星结构恒星都是气体星球。晴朗无月的夜晚,且无光污染的地区,一般人用肉眼大约可以看到6000多颗恒星。

借助于望远镜,则可以看到几十万乃至几百万颗以上。估计银河系中的恒星大约有1500-2000亿颗。

恒星的两个重要的特征就是温度和绝对星等。大约100年前,丹麦的艾依纳尔·赫茨普龙(Einar Hertzsprung)和美国的享利·诺里斯·罗素(Henry Norris Russell )各自绘制了查找温度和亮度之间是否有关系的图,这张关系图被称为赫罗图,或者H—R图。

在H-R图中,大部分恒星构成了一个在天文学上称作主星序的对角线区域。在主星序中,恒星的绝对星等增加时,恒星的演变其表面温度也随之增加。

90%以上的恒星都属于主星序,太阳也是这些主星序中的一颗。巨星和超巨星处在H—R图的右侧较高较远的位置上。

白矮星的表面温度虽然高,但亮度不大,所以他们只处在该图的中下方。1.2恒星演化 恒星在其生命期内(发光与发热的期间)的连续变化。

生命期则依照星体大小而有所不同。单一恒星的演化并没有办法完整观察,因为这些过程可能过于缓慢以致于难以察觉。

因此天文学家利用观察许多处于不同生命阶段的恒星,并以计算机模型模拟恒星的演变。 天文学家赫茨普龙和哲学家罗素首先提出恒星分类与颜色和光度间的关系。

恒星——赫罗图系,建立了被称为“赫-罗图的”恒星演化关系,揭示了恒星演化的秘密。“赫-罗图”中,从左上方的高温和强光度区到右下的低温和弱光区是一个狭窄的恒星密集区,我们的太阳也在其中;这一序列被称为主星序,90%以上的恒星都集中于主星序内。

在主星序区之上是巨星和超巨星区;左下为白矮星区。1.3恒星形成 在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。

这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。

当物质的线度收缩了几个数量级后,情况就不同了,一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。 星坯的力学平衡是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。

这一热学上趋向平衡的自然倾向对力学起着削弱的作用。于是星坯必须缓慢的收缩,以其引力位能的降低来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。

这就是星坯演化的主要物理机制。 最新观测发现S1020549恒星下面我们利用经典引力理论大致的讨论这一过程。

考虑密度为ρ、温度为T、半径为r的球状气云系统,气体热运动能量:ET= RT= T (1) 将气体看成单原子理想气体,μ为摩尔质量,R为气体普适常数。为了得到气云球的的引力能Eg,想象经球的质量一点点移到无穷远,将球全部移走场力作的功就等于-Eg。

当球质量为m,半径为r时,从表面移走dm过程中场力做功:dW=- =-G( )1/3m2/3dm(2) 所以:-Eg=- ( )1/3m2/3dm= G( M5/3。于是:Eg=- (2)。

气体云的总能量: E=ET+EG (3)。灵魂星云将形成新的行星热运动使气体分布均匀,引力使气体集中。

现在两者共同作用。当E>0时热运动为主,气云是稳定的,小的扰动不会影响气云平衡;当E<0时,引力为主,小的密度扰动产生对均匀的偏离,密度大处引力增大,使偏离加强而破坏平衡,气体开始塌缩。

由E≤0得到产生收缩的临界半径:(4) 相应的气体云的临界质量为:(5) 原始气云密度小,临界质量很大。所以很少有恒星单独产生,大部分是一群恒星一起产生成为星团。

球形星团可以包含10^5→10^7个恒星,可以认为是同时产生的。 我们已知:太阳质量:MΘ=2*10^33,半径R=7*10^10,我们带入(2)可得出太阳收缩到今天这个状态以释放的引力能。

太阳的总光度L=4*10^33erg.s-1如果这个辐射光度靠引力为能源来维持,那么持续的时间是:很多证明表明,太阳稳定的保持着今天的状态已有5*10^9年了,因此,星坯阶段只能是太阳形成像今天这样的稳定状态之前的一个短暂过渡阶段。这样提出新问题,星坯引力收缩是如何停止的?此后太阳辐射又是以什么为能源?1.4恒星稳定期 主序星阶段在收缩过程中密度增加,我们知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r减小的更快,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。

如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原。

8.请说出几条天文小知识

▲.什么是宇宙?

答:宇宙是天地万物的总称,它既没有边际,也没有尽头,同时也没有开始和终结。

▲.银河系有多大?

答:许许多多的恒星合在一起,组成一个巨大的星系,其中太阳系所在的星系叫银河系。银河系像一只大铁饼,宽约8万光年,中心厚约1.2万光年,恒星的总数在1000颗以上。

▲.为什么白天看不见星星?

答:因为白天部分阳光被大气中的气体和尘埃散射,把天空照得十分明亮,再加上太阳辐射的光线非常强烈,使我们看不出星星来了。

▲.太阳系里有哪些天体?

答:太阳系中有9大行星。它们依次是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。另外,太阳系里还有许多小行星,彗星和流星,已正式编号的小行星有2958颗。最著名的彗星是哈雷彗星。

▲.为什么星星有不同的颜色?

答:星星的颜色决定于它的温度。不同的颜色代表着不同的表面温度:发蓝的星星表面温度高,发红的星星表面温度低。

▲.最亮的星是什么星?

答:天空中最亮的星是大犬座里的天狼星,星等为1.46等。距地球8.7光年。

▲.怎样找北极星?

答:在天空中很容易找到北极星:先找到大熊星,再找到北斗七星。从勺头边上的那两颗指极星引出一条直线,它延长过去正好通过北极星。北极星到勺头的距离,正好是两颗指极星间距离的5倍。也可以通过“仙后座”找北极星。

▲.蓝天有多高?

答:“蓝天”其实是地球的大气层。大气层是包围着地球的空气,根据空气密度的不同分为5层,总共有2000-3000公里厚。但绝大部分空气都集中在从地面到15公里高以下的地方,越往高处空气越稀薄。大气层有多厚,蓝天就应该有多高。

▲.为什么天空是蓝色的?

答:当太阳光照射到地球的大气层时,蓝色光最容易从其他颜色中分离出来,扩散到空气中再反射出来。而其他颜色的光穿透能力很强,透过大气层照到地球上,于是我们看天空只能见到日光中的蓝色光。

9.谁有关于天文学方面的小知识

天文知识1001条,下载地址: (一)宇宙的起源宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。

宇宙是物质世界,它处于不断的运动和发展中。 《淮南子·原道训》 注:“四方上下曰宇,古往今来曰宙,以喻天地。”

即宇宙是天地万物的总称。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。

直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。

大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。

注释:大爆炸理论 (big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。

它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。

这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。

物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。

但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。

温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。

当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实: (1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。

各种天体年龄的测量证明了这一点。 (2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。

如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。 (3)在各种不同天体上,氦丰度相当大,而且大都是30%。

用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。

(4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。

1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。(二)行星状星云 发射星云的一种。

在望远镜中大都具有象天王星或海王星那样的略带绿色而有明亮边缘的小圆面,因此赫歇尔在1779年发现这类天体后称它们为行星状星云。 用大望远镜观察显示出行星状星云有纤维、斑点、气流和小弧等复杂结构。

它们主要分布在银道面附近,受到星际消光的影响,大量的行星状星云被暗星云遮蔽而难以观测,根据太阳附近的分布密度(约每千立方秒差距三十到五十个)估计,整个银河系中应该有四五万个,现在观测到的只是其中很小的一部分。 行星状星云的质量在十分之一到一个太阳质量之间,星云中的密度在每立方厘米 100-10,000个原子(离子)之间。

行星状星云的中心星都是温度很高的(大于等于30000K),星云吸收它发出的强紫外辐射通过级联跃迁过程转化为可见光。行星状星云象征着一颗恒星到了晚年,估计行星状星云的寿命平均为三万年左右,星云气体逐渐扩散消失于星际空间,仅留下一个中央白矮星。

(三)云雾状星云 气体星云主要由高温气体组成。 组成星云的物质受附近的恒星发出的紫外线影响而带有电荷,并在它们降压的过程中放出射线(在很大程度上类似于霓虹灯)。

这类星云通常都是红色的,因为它们的主要成份氢在此情况下呈红色(其他物质呈不同的颜色,但氢的含量远高于其他物质)。气体星云通常会孕育新的恒星。

尘埃星云是由尘埃组成的星云,它仅仅靠反射附近恒星发出的光而能被看到,所以也叫反射星云。尘埃星云也常常成为恒星诞生的场所。

它们看上去常呈蓝色,因为它们反射的蓝光较多。尘埃星云和气体星云一般都会呆在一起,有时它们一起被称作云雾状星云。

(四)暗星云 暗星云是银河系中不发光的弥漫物质所形成的云雾状天体。和亮星云一样,他们的大小和形状是多种多样的。

小的只有太阳质量的百分之几到千分之几,是出现在一些亮星云背景上的球状体;大的有几十到几百个太阳的质量,有的甚至更大。它们内部的物质密度也。

有哪些天文的小知识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除