光学常识

2022-04-14 综合 86阅读 投稿:狄云义

1. 物理光学基础知识chuzhongde

五、光的反射 1、光源:能够发光的物体叫光源 2、光在均匀介质中是沿直线传播的 大气层是不均匀的,当光从大气层外射到地面时,光线发了了弯折 3、光速 光在不同物质中传播的速度一般不同,真空中最快, 光在真空中的传播速度:C = 3*108 m/s,在空气中的速度接近于这个速度,水中的速度为3/4C,玻璃中为2/3C 4、光直线传播的应用 可解释许多光学现象:激光准直,影子的形成,月食、日食的形成、小孔成像等 5、光线 光线:表示光传播方向的直线,即沿光的传播路线画一直线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在) 6、光的反射 光从一种介质射向另一种介质的交界面时,一部分光返回原来介质中,使光的传播方向发生了改变,这种现象称为光的反射 7、光的反射定律 反射光线与入射光线、法线在同一平面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角 可归纳为:“三线一面,两线分居,两角相等” 理 (1) 由入射光线决定反射光线,叙述时要“反”字当头 (2) 发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中 (3) 反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度 8、两种反射现象 (1) 镜面反射:平行光线经界面反射后沿某一方向平行射出,只能在某一方向接收到反射光线 (2) 漫反射:平行光经界面反射后向各个不同的方向反射出去,即在各个不同的方向都能接收到反射光线 注意:无论是镜面反射,还是漫反射都遵循光的反射定律 9、在光的反射中光路可逆 10、平面镜对光的作用 (1)成像 (2)改变光的传播方向 11、平面镜成像的特点 (1)成的像是正立的虚像 (2)像和物的大小 (3)像和物的连线与镜面垂直,像和物到镜的距离相等 理平面镜所成的像与物是以镜面为轴的对称图形 12、实像与虚像的区别 实像是实际光线会聚而成的,可以用屏接到,当然也能用眼看到.虚像不是由实际光线会聚成的,而是实际光线反向延长线相交而成的,只能用眼看到,不能用屏接收. 13、平面镜的应用 (1)水中的倒影 (2)平面镜成像 (3)潜望镜 六、光的折射 1、光的折射 光从一种介质斜射入另一种介质时,传播方向一般会发生变化,这种现象叫光的折射 理光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射. 注意:在两种介质的交界处,既发生折射,同时也发生反射 2、光的折射规律 光从空气斜射入水或其他介抽中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆. 理折射规律分三点:(1)三线一面 (2)两线分居(3)两角关系分三种情况:①入射光线垂直界面入射时,折射角等于入射角等于0°;②光从空气斜射入水等介质中时,折射角小于入射角;③光从水等介质斜射入空气中时,折射角大于入射角 3、在光的折射中光路是可逆的 4、透镜及分类 透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,且透镜厚度远比其球面半径小的多. 分类:凸透镜:边缘薄,中央厚 凹透镜:边缘厚,中央薄 5、主光轴,光心、焦点、焦距 主光轴:通过两个球心的直线 光心:主光轴上有个特殊的点,通过它的光线传播方向不变.(透镜中心可认为是光心) 焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用“F”表示 虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点. 焦距:焦点到光心的距离叫焦距,用“f”表示. 每个透镜都有两个焦点、焦距和一个光心.如图 6、透镜对光的作用 凸透镜:对光起会聚作用(如图) 凹透镜:对光起发散作用(如图) 7、凸透镜成像规律 物 距 (u) 成像 大小 像的 虚实 像物位置 像 距 ( v ) 应 用 u > 2f 缩小 实像 透镜两侧 f 凸透镜成像规律口决记忆法 口决一: “一焦分虚实,二焦分大小;虚像同侧正;实像异侧倒,物运像变小” 口决二: 三物距、三界限,成像随着物距变; 物远实像小而近,物近实像大而远. 如果物放焦点内,正立放大虚像现; 幻灯放像像好大,物处一焦二焦间; 相机缩你小不点,物处二倍焦距远. 口决三: 凸透镜,本领大,照相、幻灯和放大; 二倍焦外倒实小,二倍焦内倒实大; 若是物放焦点内,像物同侧虚像大; 一条规律记在心,物近像远像变大. 8、为了使幕上的像“正立”(朝上),幻灯片要倒着插. 9、照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头.。

2. 光学知识:

凸透镜是折射成像 成的像可以是 正、倒;虚、实;放、缩。

起聚光作用 凹面镜是反射成像 能成倒立的缩小或放大的实像,也可以成正立放大的虚像。起散光作用透镜(包括凸透镜)是使光线透过,使用光线折后成像的仪器,光线遵守折射定律。

面镜(包括凸面镜)不是使光线透过,而是反射回去成像的仪器,光线遵守反射定律。 凸透镜与凹透镜的区别凸透镜可以成倒立放大、等大、缩小的实像或正立放大的虚像。

可把平行光会聚于焦点,也可把焦点发出的光线折射成平行光。凹面镜只能成正立放大的虚像,主要用发散光线。

1/2波片使出射光中 o光 e光的位相差增加 π偏振片对入射光具有遮蔽和透过的功能,可使纵向光或横向光一种透过,一种遮蔽。你可以简单理解为在一个不透光的片上开个小缝,光有o光和e光,经过小缝过滤只有跟小缝朝向相同的光才能通过,具体远离你可以百度百科偏振片查看,比较繁琐。

3. 光学包括哪些知识

物理光学包括光的传播和光的本性 在了解光学分辨率之前应首先明确扫描仪的分辨率分为光学分辨率和最大分辨率,由于最大分辨率相当于插值分辨率,并不代表扫描仪的真实分辨率,所以我们在选购扫描仪时应以光学分辨率为准。

光学分辨率是指扫描仪物理器件所具有的真实分辨率。而且,扫描仪的光学分辨率是用两个数字相乘,如600*1200dpi,其中前一个数字代表扫描仪的横向分辨率,例如一个具有5000个感光单元的CCD器件,用于A4幅面扫描仪,由于A4幅面的纸张宽度是8.3英寸,所以,该扫描仪的光学分辨率就是5000/8.3=600dpi,换句话说,该扫描仪的光学分辨率是600dpi。

后面一数字则代表扫描仪的纵向分辨率或是机械分辨率,是扫描仪所用步进电机的分辨率,扫描仪的步进电机的精度与扫描仪的横向分辨率相同,但由于各种机械因素的影响,扫描仪的实际精度(步进电机的精度)将远远达不到横向分辨率的水平,一般来说。扫描仪的纵向分辨率是横向分辨率的两倍,有时甚至是四倍。

如:600*1200dpi。但有一点要注意:有的厂家为了显示自已的扫描仪精度高,将600*1200dpi写成1200*600dpi,因此在判断扫描仪光学分辨率时,应以最小的一个为准。

激光器的基本原理 2.1 自发辐射与受激辐射 物质的原子从外界获得能量后进入激发态,随后又很快(约10-7s)返回基态或者较低的能态,并伴随着发出光辐射.原子没有受到外来感应场的作用而跃迁回低能态,并同时发出光辐射的过程称为自发辐射跃迁,产生的光辐射称为自发辐射;能量相应于两个能级差的光子会把原子从低能态激发到高能态,这个过程称为受激吸收跃迁.1916年,著名科学家爱因斯坦在研究光辐射与原子相互作用时发现,在受激吸收跃迁和自发辐射跃迁这两种过程之间,还应存在第三种过程——受激辐射跃迁,即在能量相应于两个能级能量差的光子作用下,会使在高能态的原子向低能态跃迁,并同时发射出相同能量的光子.爱因斯坦还研究了原子与辐射场之间的动量交换,得出了受激发射跃迁产生的光子有这样一些特性:它的频率、传播方向及偏振方向,都与诱导产生这种跃迁的光子相同.这意味着,受激辐射有很好的相干性,并且是沿一个方向传播. 原子作自发辐射跃迁的速率与在原子系统中存在的辐射场强度没有关系,而受激辐射跃迁的速率则与辐射场强度有关.假定原子从能级E2往能级E1(E2>E1)自发辐射跃迁到某个模的速率为A21,作受激辐射跃迁到这个模的速率为B21,那么这两个速率的比值为 B21/A21=ne (2) 式中的ne是在这个模式中的光子数目(也称光子简并度).这表示,对于假定的模,受激发射跃迁速率是自发辐射跃迁速率的ne倍.当ne≥1时,受激辐射跃迁占优势.普通光源的辐射频率分布和辐射强度基本上是由光源的温度T来决定,在某个模的光子数ne由下式给出: 式中k在是玻尔兹曼常量(k=1.38*10-23J·K-1),h是普朗克常量(h=6.63*10-34J·s).从式(3)可以看到,由于比值 hv/kT是大于零的数,所以 exp(bv/kT)大于 1,即 ne 2.2 负温度 负温度是对光源中处于高能态的原子数目比处于低能态的原子数目多的一种状态的表述.假定光源中处在高能态E2的原子数目为N2,在低能态E1的原子数目为N1,那么,根据描述在热力学平衡状态下原子按能级分布的玻尔兹曼分布定律,这光源的温度T是 因为E2-E1>0,所以,如果N2>N1,那么,由式(3.4)看到,光源的温度T是“负值”.事实上,温度是不能为负值的,这里说的“负温度”只是表示原子按能级分布的一种状态,不是处于热力学平衡状态,而是处于非热力学平衡状态.1951年,美国珀塞尔(E.M.Purcell)试图使用所谓“突然倒转场”的方法精确测定核磁矩,即设想研究场极性改变比核自旋的响应时间更快.他用这个方法在氟化锂(LiF)晶体中获得了核自旋体反转分布,并观察到辐射频率50 kHz的受激发射,第一次提出了所谓“负温度”概念,提出粒子数反转分布只能与玻尔兹曼分布定律中的负温度相对应. 可以利用许多方法让物质中的原子(分子)实现负温度状态.从原则上说,只要对原子泵浦到高能态的速率,比它离开这个能态的速率高,最终可以造成负温度状态.现在使用的主要方法有(1)光泵浦;(2)气体放电泵浦;(3)注入电流泵浦;(4)化学泵浦等.具体内容参见3.2.4.需要注意的是,在可见光波段或红外波段获得并保持负温度状态比在微波波段困难得多,因为自由原子的自发辐射速率和光频率的三次方成正比. 2.3 激光的增益 这是表征光辐射在激光器的工作物质内传播过程中其强度增长的因子.假定激光工作物质中处在高能态E2的原子数密度为N2(原子/cm3),处在低能态E1的原子数密度为N1.频率v=(E2-E1)/h的光辐射沿工作物质传播,在单位时间内,单位体积工作物质内由受激辐射跃迁产生的辐射功率,超出由受激吸收而失掉的辐射功率的数量W为 上式中的g1、g2分别为能态E1、E2的能级简并度,λ是光辐射波长,τf是能态E2的自发辐射寿命,n是工作物质的折射率,f(v)是从能态E2向能态E1跃迁时产生的光辐射频率分布因子(也称谱线形状函数),Iv是频率v的光辐射强度.公式(3.5)中没有。

4. 物理光学的知识

1、光的折射

光从一种介质斜射入另一种介质时,传播方向一般会发生变化,这种现象叫光的折射

理解:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。

注意:在两种介质的交界处,既发生折射,同时也发生反射

2、光的折射规律

光从空气斜射入水或其他介抽中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆。

理解:折射规律分三点:(1)三线一面 (2)两线分居(3)两角关系分三种情况:①入射光线垂直界面入射时,折射角等于入射角等于0°;②光从空气斜射入水等介质中时,折射角小于入射角;③光从水等介质斜射入空气中时,折射角大于入射角

3、在光的折射中光路是可逆的

4、透镜及分类

透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,且透镜厚度远比其球面半径小的多。

分类:凸透镜:边缘薄,中央厚

凹透镜:边缘厚,中央薄

5、主光轴,光心、焦点、焦距

主光轴:通过两个球心的直线

光心:主光轴上有个特殊的点,通过它的光线传播方向不变。(透镜中心可认为是光心)

焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用“F”表示

虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点。

焦距:焦点到光心的距离叫焦距,用“f”表示。

每个透镜都有两个焦点、焦距和一个光心。如图

6、透镜对光的作用

凸透镜:对光起会聚作用(如图)

凹透镜:对光起发散作用(如图)

7、凸透镜成像规律

物 距

(u) 成像

大小 像的

虚实 像物位置 像 距

( v ) 应 用

u > 2f 缩小 实像 透镜两侧 f < v <2f 照相机

u = 2f 等大 实像 透镜两侧 v = 2f

f < u <2f 放大 实像 透镜两侧 v > 2f 幻灯机

u = f 不 成 像

u < f 放大 虚像 透镜同侧 v > u 放大镜

凸透镜成像规律口决记忆法

口决一:

“一焦分虚实,二焦分大小;虚像同侧正;实像异侧倒,物运像变小”

口决二:

三物距、三界限,成像随着物距变;

物远实像小而近,物近实像大而远。

如果物放焦点内,正立放大虚像现;

幻灯放像像好大,物处一焦二焦间;

相机缩你小不点,物处二倍焦距远。

口决三:

凸透镜,本领大,照相、幻灯和放大;

二倍焦外倒实小,二倍焦内倒实大;

若是物放焦点内,像物同侧虚像大;

一条规律记在心,物近像远像变大。

8、为了使幕上的像“正立”(朝上),幻灯片要倒着插。

9、照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头。

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除