高考物理学常识

2023-02-20 综合 86阅读 投稿:假情意

1.高中物理常识大集合

刘叔博客1、伽利略(1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点(2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点2、开普勒:提出开普勒行星运动三定律;3、牛顿(1)提出了三条运动定律。

(2)发现表万有引力定律;4、卡文迪许:利用扭秤装置比较准确地测出了引力常量G5、爱因斯坦(1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体)(2)提出光子说,成功地解释了光电效应规律,并因此获得诺贝尔物理学奖(3)提出质能方程,为核能利用提出理论基础。6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

7、焦耳和楞次先后独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(这个很冷门!以教材为主!)8、奥斯特发现南北放置的通电直导线可以使周围的磁针偏转,称为电流的磁效应。9、安培:研究电流在磁场中受力的规律(安培定则),分子电流假说,磁场能对电流产生作用10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

11、法拉第(1)发现了由磁场产生电流的条件和规律——电磁感应现象(教材上是这样的,实际不是有一定历史原因,以教材为主!)(2)提出电荷周围有电场,提出可用电场描述电场,提出电磁场、磁感线、电场线的概念12、楞次:确定感应电流方向的定律,愣次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。13、亨利:发现自感现象(这个也比较冷门)。

14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。15、赫兹:(1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。

(2)证实了电磁理的存在。16、普朗克提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和吸收不是连续的,而是一份一份的,即量子理论17玻尔:提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。

18、德布罗意:预言了实物粒子的波动性,提出波粒二象性,物质波。德布罗意波,任何一种运动的物体都有一种波与之对应。

19、汤姆生(逊)利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型(葡萄干布丁模型)。20、卢瑟福。

2.高中物理知识有哪些

物理虽然是理科,但同时又是一门理论性极强的学科,有众多的规律和概念,很多同学觉得物理难,一考试就懵逼,很大程度是因为基本的知识概念都混淆不清!在考前复习过程中,还是应该立足课本,抓基础。

今天小编为大家整理了考前必背知识点,一定要收藏好好看~不看?哼~就如图力学力力是物体间的相互作用1.力的国际单位是牛顿,用N表示;2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;3.力的示意图:用一个带箭头的线段表示力的方向;4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;重力:由于地球对物体的吸引而使物体受到的力;a.重力不是万有引力而是万有引力的一个分力;b.重力的方向总是竖直向下的(垂直于水平面向下)c.测量重力的仪器是弹簧秤;d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;b.弹力包括:支持力、压力、推力、拉力等等;c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;d.在弹性限度内弹力跟形变量成正比;F=Kx摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;d.静法);矢量;。

3.高中物理知识总结

力学部分: 1、基本概念: 力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律: 匀变速直线运动的基本规律(12个方程); 三力共点平衡的特点; 牛顿运动定律(牛顿第一、第二、第三定律); 万有引力定律; 天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题); 动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系); 动量守恒定律(四类守恒条件、方程、应用过程); 功能基本关系(功是能量转化的量度) 重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点); 功能原理(非重力做功与物体机械能变化之间的关系); 机械能守恒定律(守恒条件、方程、应用步骤); 简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用; 简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用; 3、基本运动类型: 运动类型受力特点备注 直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析 匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动 2.匀减速直线运动 曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向 合外力指向轨迹内侧 (类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解 匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心 (合外力充当向心力)一般圆周运动的受力特点 向心力的受力分析 简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法: 力的合成与分解(平行四边形、三角形、多边形、正交分解); 三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法); 对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法); 处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像); 解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点); 针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型: 合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。

斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。 动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。

竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。 人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

动量机械能的综合题: (1)单个物体应用动量定理、动能定理或机械能守恒的题型; (2)系统应用动量定理的题型; (3)系统综合运用动量、能量观点的题型: ①碰撞问题; ②爆炸(反冲)问题(包括静止原子核衰变问题); ③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程); ④子弹射木块问题; ⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等); ⑥单摆类问题: ⑦工件皮带问题(水平传送带,倾斜传送带); ⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒); 机械波的图像应用题: (1)机械波的传播方向和质点振动方向的互推; (2)依据给定状态能够画出两点间的基本波形图; (3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量; (4)机械波的干涉、衍射问题及声波的多普勒效应。 电磁学部分: 1、基本概念: 电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速 2、基本规律: 电量平分原理(电荷守恒) 。

4.高中物理知识大纲

物理复习中要实现"知识立体化"主要有两个方面.一是以大纲要求,突破教材原有的章节顺序,根据知识成分、结构以及它们的内在联系,巧妙地把知识进行重新梳理和组织,从全貌到单个、从外延到内涵、从理解到掌握,以便灵活运用,形成多层次的知识立体感;二是精心设计具有单项针对性和综合运用性的立体习题,适时检查对知识的理解和掌握的程度,训练灵活运用知识的能力,强化知识立体模型,使学生对知识的理解和运用达到尽善尽美的程度. 1.第一方面:形成知识立体模型 复习中使学生形成立体模型,主要是采用分析比较、归纳演绎、渗透联想等思维方法,在尊重知识发展规律和相互依存的关系的基础上进行以下三个程序: (1)分析知识的内在联系,抽出知识主线组成主骨架. 分析现行高中物理教材,它构成的知识体系的主骨架是三条主线:一是力和运动;二是冲量和动量;三是功和能.如果有目的地按这三条主线去安排复习教材,组织讨论,寻找各部分知识之间的联系和发展,就容易把握住知识的主要方面. 例如功和能,可以根据:教材中哪些部分含有功和能的概念?哪些规律是功和能的运用和发展?从同一信息来源出发沿力学、热学、电磁学、光学、原子物理学等不同方向去分析探索,明白功和能在各部分知识中的主导作用,使其自然地把握住功和能这条主线. 一旦理解掌握了教材中的知识主线,就会有的放矢地去认识现象,掌握规律,巩固旧知识,启迪新知识.这实际上是掌握了探求问题的真谛的金钥匙. (2)围绕知识主线,归纳演绎主要知识,形成知识经络. 知识主骨架形成后,就应因势打开思路,根据知识主线去演绎各知识单元的主要知识形成经络.如力学知识单元,它主要是由于作用的瞬时效应(牛顿第二定律)、时间积累效应(动量定律)、空间积累效应(动能定理)和两个守恒定律(动量守恒、机械能守恒)组成经络,这可用力和运动作基础,如以下层层归纳演绎: 力是物体运动状态改变的原因,即产生加速度的原因.物体只要受到力的作用就立即产生加速度,它们之间的关系是瞬时比例关系,用牛顿第二定律来表达,即:∑F=ma 如将牛顿第二定律和运动学公式相结合,就得牛顿第二定律的另一种表示形式: ∑F=ΔP/Δt 从而得到动量定理的表达式 ∑F·Δt=ΔP 即:物体受合外力的冲量等于物体动量的增量,它表示了力对作用时间的积累效应. 如仅仅是物体1与物体2之间发生相互作用,根据牛顿第三定律知: F1、2=-F2、1 若物体相互作用时间为t,对每个物体则有: F1、2=Δp2/t F2、1=Δp1/t 对两个物体组成的物体系有: Δp2=-Δp1 得:P1+P2=P1′+P2′ 即:相互作用的物体组成的系统,若不受外力或所受外力的合力为零,系统的总动量保持不变,这就是动量守恒定律. 如果用牛顿第二定律与运动学公式相结合还可演绎出另一种表达式: 又得到动能定理表达式:W=ΔEk 即:所有力(包括重力、弹力)对物体所做的功的代数和等于物体动能的增量,表示了力作用的空间积累效应. 若物体组成的系统只有重力或弹力做功,其它力不做功(或它们做功的代数和为零),按动能定理又得机械能守恒定律等等. 从上可以看出,通过知识主线演绎形成的知识经络,实现了对知识的理解由部分向整体,由粗向细逐步过渡的过程.花的时间少而收效大. (3)把主要知识纵横渗透到各个部分完成知识立体模形. 知识的"主骨架"和"经络"形成后,继续分析知识的发展规律和相互依存关系.通过"搭桥"、"攀越"、"解惑'等手法把主要知识渗透到各个部分,从多角度运用知识,完成知识立体雏形. 如力学知识经络中的力作用瞬时效应(牛顿第二定律),它是解决动力学问题的桥梁.对它的渗透可作如下引导: ∑F决定物体运动的加速度a和运动性质: ∑F=0时,a=0,物体处于平衡状态,要么静止,要么做匀速直线运动. ②当∑F=恒矢量时,a=∑F/m为恒矢量,物体做匀变速运动.如∑F的方向与初速v0的方向呈现夹角为θ时,可出现以下几种不同形式的匀变速运动: v0=0,匀加速直线运动,如自由落体; v0=0,θ=0,匀加速直线运动,如竖直下抛运动; v0≠0 ,且θ=180°,匀减速直线运动,如竖直上抛运动; v0≠0,且θ=90°,匀加速曲线运动,如平抛运动; v0≠0,且0°。

5.高中物理的所有必备知识

将这些公式推出来你就知道了 1)匀变速直线运动1.平均速度V平=/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):(m);角度(Φ):弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变. 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67*10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注:(1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解) (1)常见的力 1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力F=Gm1m2/r2 (G=6.67*10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2 (k=9.0*109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq (E:场强N/C,q。

6.谁能帮我归纳些高中物理知识

一、运动的描述 1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。 2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。 二、力 1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。 3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。 4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

三、牛顿运动定律 1.F等ma,牛顿二定律,产生加速度,原因就是力。 合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。

2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零 四、曲线运动、万有引力 1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。 2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

五、机械能与能量 1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。 2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

六、电场 〖选修3--1〗 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。 2.电荷周围有电场,F比q定义场强。

KQ比r2点电荷,U比d是匀强电场。 电场强度是矢量,正电荷受力定方向。

描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。

场力做功是qU ,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。

方向由高指向低,面密线密是特点。 七、恒定电流〖选修3-1〗 1.电荷定向移动时,电流等于q比 t。

自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。

电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。

电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。

3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。

八、磁场〖选修3-1〗 1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。 2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。

3.BIL安培力,相互垂直要注意。 4.洛仑兹力安培力,力往左甩别忘记。

九、电磁感应〖选修3-2〗 1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。

感应电动势大小,磁通变化率知晓。 2.楞次定律定方向,阻碍变化是关键。

导体切割磁感线,右手定则更方便。 3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。

楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。 十、交流电〖选修3-2〗 1.匀强磁场有线圈,旋转产生交流电。

电流电压电动势,变化规律是弦线。 中性面计时是正弦,平行面计时是余弦。

2.NBSω是最大值,有效值用热量来计算。 3.变压器供交流用,恒定电流不能用。

理想变压器,初级U I值,次级U I值,相等是原理。 电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地算出。 远距输电用,升压降流送,否则耗损大,用户后降压。

十一、气态方程〖选修3-3〗 研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。

压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。

十二、热力学定律 1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

正负符号要准确,收入支出来理解。对内。

7.帮忙归纳一下高中物理知识要点及重要公式,好才又追加分,不会亏待

力学 一、直线运动 v=s/t a=Δv/t s=v0•t+0.5•a•t2 (匀加/减速直线运动) vt2-v02=2•a•s 二、力 f=μ•N M=F•L•cos θ 平衡时,M1+M2+…=0 即∑M=0 F=m•a 三、曲线运动 万有引力 v=Δs(路程)/Δt 1、匀速圆周运动 ω=Δφ/Δt v=ω•R T=2π/ω a=v2/R=ω2•R 向心力F=m•a=m•v2/R=m•ω2•R 2、万有引力定律 开普勒第三定律:R3=k•T2(k在太阳系中取3.354*1013 m3/s2 F=G•M•m/R2 M=4π2•r3/(G•T2) g=G•M/r2 ρ=3π/(T•G) ω2=G•M/R3 五、动量 V=a•t=F/m •t F•t=P'-P 六、机械能 W=F•s•cos α P=W/t=F•v•cos α EK=F•s=0.5m•v2 EP=m•g•h 七、机械振动 f=1/T 单位:赫兹(Hz) T=f/1 弹簧振子的周期T=2π(m/k)1/2 1、单摆 F=mg•sin θ T=2π(l/g)1/2 测重力加速度 g=4π2l/T2 2、波 V=f•λ=λ/T sin i/sin r=v1/v2 3、声波 L=10•lg(I/I0) 热学 一、分子热运动 能量守恒 W+Q=ΔE c=Q/(ΔT•m) 一定质量的气体 p•V/T=恒量 p•V=R•T•m/M 电磁学 一、静电场 F=k•Q1•Q2/r2 (k=9.0*109 N•m2/C2) E=F/q U=ε/q (ε为电势能) UAB=E•d•cos α 1、电容 C=Q/U 二、恒定电流 I=Q/t=v•S•n•q R=ρ•l/S 1、欧姆定律 I=U/R W=U•q=U•I•t P=U•I P=I2•R 2、闭合电路(全电路)的欧姆定律 ε=I•r+I•R I=ε/(R+r) U=ε-I•r Η=I2•R/(ε•I)=R/(R+r) 二、磁场 B=F/(I•l) Φ=B•S•cos α 洛伦兹力 f=q•v•B•sin θ 带电粒子在匀强磁场中作匀速圆周运动 R=m•v/(q•B) T=2π•R/v=2π•m/(q•B) 三、电磁感应 感生电动势 ε=Δφ/Δt 动生电动势 ε=L•v•B 四、交变电流 正弦交流电 i=e/R=B•S•ω•sin (ωt)/R=Im•sin (ωt) XL=2π•f•L XC=1/(2π•f•C) 远距离输电 P损= R= I2•ρ•l/S 三相交流电 eA=εm•sin(ω•t) eB=εm•sin(ω•t-2π/3) eC=εm•sin(ω•t-4π/3)[光学、原子物理(末章)未归纳]。

2016高考物理学常识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除