物理高二常识

2022-07-23 综合 86阅读 投稿:氢气

1.高中物理的所有必备知识

将这些公式推出来你就知道了 1)匀变速直线运动1.平均速度V平=/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):(m);角度(Φ):弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变. 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67*10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注:(1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解) (1)常见的力 1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力F=Gm1m2/r2 (G=6.67*10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2 (k=9.0*109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq (E:场强N/C,q。

2.高中物理知识有哪些

物理虽然是理科,但同时又是一门理论性极强的学科,有众多的规律和概念,很多同学觉得物理难,一考试就懵逼,很大程度是因为基本的知识概念都混淆不清!在考前复习过程中,还是应该立足课本,抓基础。

今天小编为大家整理了考前必背知识点,一定要收藏好好看~不看?哼~就如图力学力力是物体间的相互作用1.力的国际单位是牛顿,用N表示;2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;3.力的示意图:用一个带箭头的线段表示力的方向;4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;重力:由于地球对物体的吸引而使物体受到的力;a.重力不是万有引力而是万有引力的一个分力;b.重力的方向总是竖直向下的(垂直于水平面向下)c.测量重力的仪器是弹簧秤;d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;b.弹力包括:支持力、压力、推力、拉力等等;c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;d.在弹性限度内弹力跟形变量成正比;F=Kx摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;d.静法);矢量;。

3.高中物理知识总结

说明:高中物理的确难,实用口诀能帮忙。

物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。本稿根据网上资料《高中物理实用口诀》整理、修改、补充。

删除了部分与新课标不相符的内容。楷体字加粗的,是补充或修改的内容。

增补了运动的描述、恒定电流、变压器和热力学定律等内容。 一、运动的描述 1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。 2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。 二、力 1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑; 洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。 3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。 4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

三、牛顿运动定律 1.F等ma,牛顿二定律,产生加速度,原因就是力。 合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。

2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零 四、曲线运动、万有引力 1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。 2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

五、机械能与能量 1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。 2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

六、电场 〖选修3--1〗 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。 2.电荷周围有电场,F比q定义场强。

KQ比r2点电荷,U比d是匀强电场。 电场强度是矢量,正电荷受力定方向。

描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。

场力做功是qU ,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。

方向由高指向低,面密线密是特点。 七、恒定电流〖选修3-1〗 1.电荷定向移动时,电流等于q比 t。

自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。

电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。

电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。

3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。

八、磁场〖选修3-1〗 1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。 2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。

3.BIL安培力,相互垂直要注意。 4.洛仑兹力安培力,力往左甩别忘记。

九、电磁感应〖选修3-2〗 1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。

感应电动势大小,磁通变化率知晓。 2.楞次定律定方向,阻碍变化是关键。

导体切割磁感线,右手定则更方便。 3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。

楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。 十、交流电〖选修3-2〗 1.匀强磁场有线圈,旋转产生交流电。

电流电压电动势,变化规律是弦线。 中性面计时是正弦,平行面计时是余弦。

2.NBSω是最大值,有效值用热量来计算。 3.变压器供交流用,恒定电流不能用。

理想变压器,初级U I值,次级U I值,相等是原理。 电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地。

4.高中物理知识口诀

一字不识 一字不苟 一字不易 一言不发 高中物理知识点实用口诀(必修+选修) 一、运动的描述 1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。 2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。 二、力 1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑; 洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。 3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。 4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

三、牛顿运动定律 1.F等ma,牛顿二定律,产生加速度,原因就是力。 合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。

2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零 四、曲线运动、万有引力 1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。 2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

五、机械能与能量 1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。 2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

六、电场 〖选修3--1〗 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。 2.电荷周围有电场,F比q定义场强。

KQ比r2点电荷,U比d是匀强电场。 电场强度是矢量,正电荷受力定方向。

描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。

场力做功是qU ,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。

方向由高指向低,面密线密是特点。 七、恒定电流〖选修3-1〗 1.电荷定向移动时,电流等于q比 t。

自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。

电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。

电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。

3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。

八、磁场〖选修3-1〗 1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。 2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。

3.BIL安培力,相互垂直要注意。 4.洛仑兹力安培力,力往左甩别忘记。

九、电磁感应〖选修3-2〗 1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。

感应电动势大小,磁通变化率知晓。 2.楞次定律定方向,阻碍变化是关键。

导体切割磁感线,右手定则更方便。 3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。

楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。 十、交流电〖选修3-2〗 1.匀强磁场有线圈,旋转产生交流电。

电流电压电动势,变化规律是弦线。 中性面计时是正弦,平行面计时是余弦。

2.NBSω是最大值,有效值用热量来计算。 3.变压器供交流用,恒定电流不能用。

理想变压器,初级U I值,次级U I值,相等是原理。 电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地算出。 远距输电用,升压降流送,否则耗损大,用户后降压。

十一、气态方程〖选修3-3〗 研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。

压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。

十二、热力学定律 1。

5.高中物理常识大集合

刘叔博客

1、伽利略

(1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点

(2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点

2、开普勒:提出开普勒行星运动三定律;

3、牛顿

(1)提出了三条运动定律。

(2)发现表万有引力定律;

4、卡文迪许:利用扭秤装置比较准确地测出了引力常量G

5、爱因斯坦

(1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体)

(2)提出光子说,成功地解释了光电效应规律,并因此获得诺贝尔物理学奖

(3)提出质能方程,为核能利用提出理论基础。

6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

7、焦耳和楞次

先后独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(这个很冷门!以教材为主!)

8、奥斯特

发现南北放置的通电直导线可以使周围的磁针偏转,称为电流的磁效应。

9、安培:研究电流在磁场中受力的规律(安培定则),分子电流假说,磁场能对电流产生作用

10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

11、法拉第

(1)发现了由磁场产生电流的条件和规律——电磁感应现象(教材上是这样的,实际不是有一定历史原因,以教材为主!)

(2)提出电荷周围有电场,提出可用电场描述电场,提出电磁场、磁感线、电场线的概念

12、楞次:确定感应电流方向的定律,愣次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

13、亨利:发现自感现象(这个也比较冷门)。

14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

15、赫兹:

(1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。

(2)证实了电磁理的存在。

16、普朗克

提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和吸收不是连续的,而是一份一份的,即量子理论

17玻尔:提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。

18、德布罗意:预言了实物粒子的波动性,提出波粒二象性,物质波。德布罗意波,任何一种运动的物体都有一种波与之对应。

19、汤姆生(逊)

利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型(葡萄干布丁模型)。

20、卢瑟福

6.谁能帮忙总结一下高中物理知识

高中物理知识总结 高中物理公式总结 物理定理、定律、公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67*10-11N•m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 三、力(常见的力、力的合成与分解) 1)常见的力 1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力F=Gm1m2/r2 (G=6.67*10-11N•m2/kg2,方向在它们的连线上。

7.高中物理的知识要点

一、力学 1、胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关) 2、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力) 3 、求F 、的合力:利用平行四边形定则。

注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ú F1-F2 ú £ F£ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 F合=0 或 : Fx合=0 Fy合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。

[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零。(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= m FN 说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ② m为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关。

(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比。 大小范围: O£ f静£ fm (fm为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。

b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= rgV (注意单位) 7、万有引力: F=G (1) 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。

(2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3) 在天体上的应用:(M——天体质量 ,m-卫星质量, R——天体半径 ,g——天体表面重力加速度,h-卫星到天体表面的高度) a 、万有引力=向心力 G b、在地球表面附近,重力=万有引力 mg = G g = G c、第一宇宙速度 mg = m V= 8、库仑力:F=K (适用条件:真空中,两点电荷之间的作用力) 9、电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10、磁场力: (1) 洛仑兹力:磁场对运动电荷的作用力。

公式:f=qVB (B^V) 方向——左手定则 (2) 安培力 : 磁场对电流的作用力。 公式:F= BIL (B^I) 方向——左手定则 11、牛顿第二定律: F合 = ma 或者 ?Fx = m ax ?Fy = m ay 适用范围:宏观、低速物体 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4) 同体性 (5)同系性 (6)同单位制 12、匀变速直线运动: 基本规律: Vt = V0 + a t S = vo t + a t2 几个重要推论: (1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值) (2) A B段中间时刻的瞬时速度: Vt/ 2 = = (3) AB段位移中点的即时速度: Vs/2 = 匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2

全过程是初速度为VO、加速度为-g的匀减速直线运动。 (1) 上升最大高度: H = (2) 上升的时间: t= (3) 上升、下落经过同一位置时的加速度相同,而速度等值反向 (4) 上升、下落经过同一段位移的时间相等。

从抛出到落回原位置的时间:t = (5)适用全过程的公式: S = Vo t —— g t2 Vt = Vo-g t Vt2 -Vo2 = - 2 gS ( S、Vt的正、负号的理解) 14、匀速圆周运动公式 线速度: V= Rw =2 f R= 角速度:w= 向心加速度:a = 2 f2 R 向心力: F= ma = m 2 R= m m4 n2 R 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。 (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供 15、平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动 水平分运动: 水平位移: x= vo t 水平分速度:vx = vo 竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t tgq = Vy = Votgq Vo =Vyctgq V = Vo = Vcosq Vy = Vsinq 在Vo、Vy、V、X、y、t、q七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量。 16、动量和冲量: 动量: P = mV 冲量:I = F t (要注意矢量性) 17 、动量定理: 物体所受合外力的冲量等于它的动量的变化。

公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键) 18、动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零。

8.高中物理知识详解

物体以一定的初速度沿水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。

平抛运动可看作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运动。平抛运动的物体,由于所受的合外力为恒力,所以平抛运动是匀变速曲线运动,平抛物体的运动轨迹为一抛物线。

平抛运动的时间仅与抛出点的竖直高度有关;物体落地的水平位移与时间(竖直高度)及水平初速度有关。 平抛运动可用两种途径进行解答 . 一种是位移途径; 另一种是速度途径. 位移途径为: L(水平)=vt L(竖直)= 1/2gt^2 还有速度途径为: t=v/t v(竖直)=gt 即可求解 平抛运动是曲线运动中的常见运动,而且又是一种特殊的曲线运动即匀变速曲线运动,它在高中物理教学中既是重点之一又是难点之一。

应用平抛运动的规律解题的首先是将平抛物体的运动正确地沿两个方向分解为两个简单运动,即水平方向的匀速直线运动和竖直方向的自由落体运动。根据运动的独立性原理决定了水平方向与竖直方向的两个分运动互不影响;而分运动之间、以及分运动和合运动之间的等时性则是联系各分运动、以及分运动和合运动的桥梁,所以求解平抛运动的时间成为解决平抛运动问题的关键。

现就平抛运动中几种典型实例的解法予以归纳,供大家参考。 一、运用平抛运动基本规律求解 例:一位同学从楼房的阳台上以v0=2.5m/s的水平初速度平抛一物体,测得该物体抛出落在楼前5m的水平地面上,若不计空气阻力,g取10m/s2。

求:楼房阳台的高度? 解析:设阳台的高度为y,平抛物体在空中运动的时间为t, 则平抛物体在水平方向做匀速直线运动 x=v0t ① 竖直方向上是自由落体运动 ② 将x=5m,v0=2.5m/代入①、②两式,即可求得,y=20m。 所以,阳台高度为20m。

点拨:平抛运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动.必须明确,两个方向的分运动是在同一时间内完成,所以时间是联系两个分运动的纽带。 二、已知平抛运动经过一段时间后的速度的方向或位移的方向求解 例:如图所示,质量为m=0.10kg的小钢球以v0=10m/s的水平速度抛出,下落h=5.0m时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角θ=________,刚要撞击钢板时小球动量的大小为____________(取g=10m/s2), 解析:球下落5m时的竖直分速度为: 小球在水平方向上做匀速运动,速度为v0=10m/s 所以小球撞击钢板时的速度大小为: 方向与竖直方向夹角α的正切值:,所以α=45?角 由于小球是垂直撞在钢板上,钢板与水平成45?。

其动量大小为。 例:如图AB为斜面,倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点,求:(1)小球在空中的飞行时间?(2)AB间的距离? 解析:小球落到斜面上位移与水平方向的夹角为θ=30°,水平方向上匀速直线运动 x=v0t ① 竖直方向上是自由落体运动 ② 位移与水平方向夹角正切值 ③ AB间的距离 ④ 联立①②③④解得: 点拨:做平抛运动小球运动到某点时速度与水平方向的夹角α和位移与水平方向夹角θ的固定关系:,在特殊题目中应用会收到意想不到的效果 例:如图所示,从倾角为θ的足够长斜面上的A点,先后将同一小球以不同的初速度水平向右抛出。

第一次初速度为V1;球落到斜面上瞬时速度方向与斜面夹角为α1;第二次初速度为V2;球落到斜面上瞬时速度方向与斜面夹角为α2,不计空气阻力,若V1>V2,则α1 α2(填>、=、<) 本题答案为:α1=α2,这里不在解析。 三、运用匀变速直线运动特殊规律求解 平抛运动试验教学中数据处理比较复杂,重点利用了平抛运动在竖直方向上是自由落体运动即匀变速直线运动的特殊规律。

例:在研究平抛物体运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长=1.25cm,若小球在平抛运动中先后经过的几个位置如图中的a、b、c、d所示,则小球平抛的初速度的计算式为V0=__________(用、g表示),其值是_________。(g取9.8m/s2) 解析:从图中可以看出,a、b、c、d四点沿水平方向相邻两点间的距离均为2,根据平抛规律,物体在任意两相邻间隔所用时间为T,则有:。

由于a、b、c、d四点沿竖直方向依次相距、、;平抛物体在竖直方向做自由落体运动,而且任意两个连续相等时间里的位移之差相等, 即,得,代入数据得 点拨:平抛运动在竖直方向上是自由落体运动所以符合所有匀加速直线运动的规律,如: ①任意两个连续相等时间里的位移之差相等,; ②若初始位置确定在连续相等时间内的位移之比为1:3:5:7……上例中可用此规律; ③时间中点的瞬时速度为该段时间内的平均速度,如:本例中。 例:一位同学做平抛实验时,只在纸上记下重垂线у方向,未在纸上记下斜槽末端位置,并只描出如图所示的一段平抛轨迹曲线。

现在曲线上取A、B两点,用刻度尺分别量出到у的距离,AA′=x1,BB′=x2,以及AB的竖直距离h,从而可求出小球抛出的初速度V0为( ) A. B. C. D. 解析:设小球运动到A点的时间为,下落高度为;运动到B点的时间为,下落高度为 则小球运动到A点时 。

物理高二常识

声明:沿途百知所有(内容)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们将尽快删除