1.研究人工智能的知识需要哪些基础知识
人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,你要有一定的哲学基础,有科学方法论作保障。
这些学科的每一门都是博大精深的,但同时很多事物都是相通的,你学了很多知识有了一定的基础的时候再看相关知识就会触类旁通,很容易。在这中间关键是要有自己的思考,不能人云亦云,毕竟人工智能是一个正在发展并具有无穷挑战和乐趣的学科,如果你对人工智能感兴趣,那欢迎到百度的人工智能吧做客,那里有对人工智能丰富而深刻的讨论。
2.学习人工智能要准备哪些基础知识
需要必备的知识有: 1、线性代数:如何将研究对象形式化? 2、概率论:如何描述统计规律? 3、数理统计:如何以小见大? 4、最优化理论: 如何找到最优解? 5、信息论:如何定量度量不确定性? 6、形式逻辑:如何实现抽象推理? 7、线性代数:如何将研究对象形式化?人工智能简介: 1、人工智能(Artificial Intelligence),英文缩写为AI。
2、它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能涉及的学科: 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
3.人工智能专业需要学习什么知识
1.基础数学知识:线性代数、概率论、统计学、图论;2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库;3.编程语言基础:C/C++、Python、Java;4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容;5.工具基础知识:opencv、matlab、caffe等。
我们知道,目前国家也相继出台了一些扶持人工智能发展的政策,人工智能正处于发展的红利期,所以越早学习就越有就业优势。人工智能火起来就是这一两年的事儿,因此不管是上市企业,还是一些中小型企业,对于人工智能人才的需求量都非常大。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
目前来看,现在学习人工智能是一个很好的时机!学习人工智能,就来北京尚学堂。
4.人工智能都学习哪些方面的知识
基于人工智能的发展优势,很多小伙伴都想要在这个领域大展宏图,但摆在面前的三道门槛是需要你逐一攻克的。本文分享一下人工智能入门的三道屏障。
门槛一、数学基础
我们应该了解过,无论对于大数据还是对于人工智能而言,其实核心就是数据,通过整理数据、分析数据来实现的,所以数学成为了人工智能入门的必修课程!
数学技术知识可以分为三大学科来学习:
1、线性代数,非常重要,模型计算全靠它~一定要复习扎实,如果平常不用可能忘的比较多;
2、高数+概率,这俩只要掌握基础就行了,比如积分和求导、各种分布、参数估计等等。
提到概率与数理统计的重要性,因为cs229中几乎所有算法的推演都是从参数估计及其在概率模型中的意义起手的,参数的更新规则具有概率上的可解释性。对于算法的设计和改进工作,概统是核心课程,没有之一。当拿到现成的算法时,仅需要概率基础知识就能看懂,然后需要比较多的线代知识才能让模型高效的跑起来。
3、统计学相关基础
回归分析(线性回归、L1/L2正则、PCA/LDA降维)
聚类分析(K-Means)
分布(正态分布、t分布、密度函数)
指标(协方差、ROC曲线、AUC、变异系数、F1-Score)
显著性检验(t检验、z检验、卡方检验)
A/B测试
门槛二、英语水平
我这里说的英语,不是说的是英语四六级,我们都知道计算机起源于国外,很多有价值的文献都是来自国外,所以想要在人工智能方向有所成就,还是要读一些外文文献的,所以要达到能够读懂外文文献的英语水平。
门槛三、编程技术
首先作为一个普通程序员,C++ / Java / Python 这样的语言技能栈应该是必不可少的,其中 Python 需要重点关注爬虫、数值计算、数据可视化方面的应用。
人工智能入门的三道门槛,都是一些必备的基础知识,所以不要嫌麻烦,打好基础很关键!.
5.自学人工智能需要学那些专业知识
一、人工智能是一个综合学科,如楼上所说。
而其本身又分为多个方面如神经网络、机器识别、机器视觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。
对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。
大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。
prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。
如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++ MATLAB应该多学习点。对于你想买什么书学习。
我只能对我看过的书给你介绍一下,你再自己酌量一下。 1.人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。
这两本感觉买一本就可以了。第一本感觉能简单并且全面点。
这类书其实很多可是。大多内容都是重复的所以买一到两本即可。
2.机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。
3.机器人方面:新版《机器人技术手册》日译的书,可能这是我当初在当当网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。
强烈建议买一本。 二、学习人工智能AI需要下列最基础的知识: 1.需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
2.需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。 3.需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
6.求关于人工智能知识入门
1.首先选择一门语言 比如:Python、R, 2.再其他的就是你选择一个方向 比如: 3.就是一个系统性的学习对你学完后的一个目的 第一阶段:Python工具库实战学习安排:2周快速入门Python语言,掌握机器学习与数据挖掘必备Python库,全称代码实战!使用 notebook 一步步分模块演示 Python 必备基础功能。
详细介绍与演 Python 数据科学必备四大库为后续机器学习与数据挖掘打下基础,全程通俗解读,代码实战! 第二阶段:Python网络爬虫第三阶段:机器学习入门篇第四阶段:机器学习提升篇第五阶段:数据挖掘实战第六阶段:深度学习-网络与框架篇第七阶段:深度学习-项目实战篇选修1:Python数据与统计分析选修2:Python Web框架Flask实战系列其他的就是是否你有基础,高数、英语、编程基础,估计你问这个问题是没有任何的编程基础的,想学,是否有决心和恒心来长期的学习,毕竟这是一个抉择,说不定以后你就从事这个行业了,码字结束!!。
7.学习人工智能AI需要哪些知识
人工智能(Artificial Intelligence),英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。现在,人工智能已经走进了我们的生活,想加入到这个行业中来?如何开发人工智能?当然是掌握这门技术啊。
那么,大家需要掌握哪些内容?在百战程序员官网有大量免费的学习资料给大家学习。1.基础数学知识:线性代数、概率论、统计学、图论;2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库;3.编程语言基础:C/C++、Python、Java;4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容;5.工具基础知识:opencv、matlab、caffe等。
我们知道,目前国家也相继出台了一些扶持人工智能发展的政策,人工智能正处于发展的红利期,所以越早学习就越有就业优势。人工智能火起来就是这一两年的事儿,因此不管是上市企业,还是一些中小型企业,对于人工智能人才的需求量都非常大。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
目前来看,现在学习人工智能是一个很好的时机。